Interplay between intercellular signaling and cell movement in development

Cell movement and local intercellular signaling are crucial components of morphogenesis during animal development. Intercellular signaling regulates the collective movement of a cell population via direct cell-cell contact. Cell movement, conversely, can influence local intercellular signaling by re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Uriu, K.
Otros Autores: Morelli, L.G, Oates, A.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14170caa a22015257a 4500
001 PAPER-14741
003 AR-BaUEN
005 20230607131902.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84908703357 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SCDBF 
100 1 |a Uriu, K. 
245 1 0 |a Interplay between intercellular signaling and cell movement in development 
260 |b Elsevier Ltd  |c 2014 
270 1 0 |m Uriu, K.; Theoretical Biology Laboratory, RIKEN, 2-1 Hirosawa, Japan 
506 |2 openaire  |e Política editorial 
504 |a Friedl, P., Gilmour, D., Collective cell migration in morphogenesis, regeneration and cancer (2009) Nat Rev Mol Cell Biol, 10, pp. 445-457 
504 |a Rorth, P., Fellow travellers: emergent properties of collective cell migration (2012) EMBO Rep, 13, pp. 984-991 
504 |a Morelli, L.G., Uriu, K., Ares, S., Oates, A.C., Computational approaches to developmental patterning (2012) Science, 336, pp. 187-191 
504 |a Mayor, R., Theveneau, E., The neural crest (2013) Development, 140, pp. 2247-2251 
504 |a Le Douarin, N.M., Creuzet, S., Couly, G., Dupin, E., Neural crest cell plasticity and its limits (2004) Development, 131, pp. 4637-4650 
504 |a Sauka-Spengler, T., Bronner-Fraser, M., A gene regulatory network orchestrates neural crest formation (2008) Nat Rev Mol Cell Biol, 9, pp. 557-568 
504 |a Knecht, A.K., Bronner-Fraser, M., Induction of the neural crest: a multigene process (2002) Nat Rev Genet, 3, pp. 453-461 
504 |a Theveneau, E., Mayor, R., Collective cell migration of the cephalic neural crest: the art of integrating information (2011) Genesis, 49, pp. 164-176 
504 |a Kulesa, P.M., Bailey, C.M., Kasemeier-Kulesa, J.C., McLennan, R., Cranial neural crest migration: new rules for an old road (2010) Dev Biol, 344, pp. 543-554 
504 |a McLennan, R., Dyson, L., Prather, K.W., Morrison, J.A., Baker, R.E., Maini, P.K., Multiscale mechanisms of cell migration during development: theory and experiment (2012) Development, 139, pp. 2935-2944 
504 |a Wynn, M.L., Kulesa, P.M., Schnell, S., Computational modelling of cell chain migration reveals mechanisms that sustain follow-the-leader behaviour (2012) J R Soc Interface, 9, pp. 1576-1588 
504 |a Abercrombie, M., Heaysman, J.E., Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts (1953) Exp Cell Res, 5, pp. 111-131 
504 |a Carmona-Fontaine, C., Matthews, H.K., Kuriyama, S., Moreno, M., Dunn, G.A., Parsons, M., Contact inhibition of locomotion in vivo controls neural crest directional migration (2008) Nature, 456, pp. 957-961 
504 |a Davis, J.R., Huang, C.Y., Zanet, J., Harrison, S., Rosten, E., Cox, S., Emergence of embryonic pattern through contact inhibition of locomotion (2012) Development, 139, pp. 4555-4560 
504 |a Carmona-Fontaine, C., Theveneau, E., Tzekou, A., Tada, M., Woods, M., Page, K.M., Complement fragment C3a controls mutual cell attraction during collective cell migration (2011) Dev Cell, 21, pp. 1026-1037 
504 |a Romanczuk, P., Couzin, I.D., Schimansky-Geier, L., Collective motion due to individual escape and pursuit response (2009) Phys Rev Lett, 102, p. 010602 
504 |a Gong, Y., Mo, C., Fraser, S.E., Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation (2004) Nature, 430, pp. 689-693 
504 |a Lecuit, T., Le Goff, L., Orchestrating size and shape during morphogenesis (2007) Nature, 450, pp. 189-192 
504 |a Zallen, J.A., Blankenship, J.T., Multicellular dynamics during epithelial elongation (2008) Semin Cell Dev Biol, 19, pp. 263-270 
504 |a Rauzi, M., Verant, P., Lecuit, T., Lenne, P.F., Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis (2008) Nat Cell Biol, 10, pp. 1401-1410 
504 |a Tada, M., Heisenberg, C.P., Convergent extension: using collective cell migration and cell intercalation to shape embryos (2012) Development, 139, pp. 3897-3904 
504 |a Keller, R., Shook, D., Skoglund, P., The forces that shape embryos: physical aspects of convergent extension by cell intercalation (2008) Phys Biol, 5, p. 015007 
504 |a Gray, R.S., Roszko, I., Solnica-Krezel, L., Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity (2011) Dev Cell, 21, pp. 120-133 
504 |a Munro, E.M., Odell, G.M., Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord (2002) Development, 129, pp. 13-24 
504 |a Varner, V.D., Voronov, D.A., Taber, L.A., Mechanics of head fold formation: investigating tissue-level forces during early development (2010) Development, 137, pp. 3801-3811 
504 |a Skoglund, P., Keller, R., Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan (2010) Curr Opin Cell Biol, 22, pp. 589-596 
504 |a Myers, D.C., Sepich, D.S., Solnica-Krezel, L., Bmp activity gradient regulates convergent extension during zebrafish gastrulation (2002) Dev Biol, 243, pp. 81-98 
504 |a von der Hardt, S., Bakkers, J., Inbal, A., Carvalho, L., Solnica-Krezel, L., Heisenberg, C.P., The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion (2007) Curr Biol, 17, pp. 475-487 
504 |a Keller, R., Danilchik, M., Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis (1988) Development, 103, pp. 193-209 
504 |a Zajac, M., Jones, G.L., Glazier, J.A., Model of convergent extension in animal morphogenesis (2000) Phys Rev Lett, 85, pp. 2022-2025 
504 |a Zajac, M., Jones, G.L., Glazier, J.A., Simulating convergent extension by way of anisotropic differential adhesion (2003) J Theor Biol, 222, pp. 247-259 
504 |a Honda, H., Nagai, T., Tanemura, M., Two different mechanisms of planar cell intercalation leading to tissue elongation (2008) Dev Dyn, 237, pp. 1826-1836 
504 |a Brodland, G.W., Do lamellipodia have the mechanical capacity to drive convergent extension? (2006) Int J Dev Biol, 50, pp. 151-155 
504 |a Yin, C., Kiskowski, M., Pouille, P.A., Farge, E., Solnica-Krezel, L., Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation (2008) J Cell Biol, 180, pp. 221-232 
504 |a Bénazéraf, B., Francois, P., Baker, R.E., Denans, N., Little, C.D., Pourquié, O., A random cell motility gradient downstream of FGF controls elongation of an amniote embryo (2010) Nature, 466, pp. 248-252 
504 |a Lawton, A.K., Nandi, A., Stulberg, M.J., Dray, N., Sneddon, M.W., Pontius, W., Regulated tissue fluidity steers zebrafish body elongation (2013) Development, 140, pp. 573-582 
504 |a Delfini, M.C., Dubrulle, J., Malapert, P., Chal, J., Pourquié, O., Control of the segmentation process by graded MAPK/ERK activation in the chick embryo (2005) Proc Natl Acad Sci U S A, 102, pp. 11343-11348 
504 |a Mara, A., Schroeder, J., Chalouni, C., Holley, S.A., Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC (2007) Nat Cell Biol, 9, pp. 523-530 
504 |a Szabó, B., Szöllösi, G., Gönci, B., Jurányi, Z., Selmeczi, D., Vicsek, T., Phase transition in the collective migration of tissue cells: experiment and model (2006) Phys Rev E, p. 74 
504 |a Oates, A.C., Morelli, L.G., Ares, S., Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock (2012) Development, 139, pp. 625-639 
504 |a Pourquié, O., Vertebrate segmentation: from cyclic gene networks to scoliosis (2011) Cell, 145, pp. 650-663 
504 |a Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T., Kageyama, R., Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene (2013) Cell Rep, 3, pp. 1-7 
504 |a Uriu, K., Ares, S., Oates, A.C., Morelli, L.G., Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions (2012) Phys Biol, 9, p. 036006 
504 |a Uriu, K., Morishita, Y., Iwasa, Y., Random cell movement promotes synchronization of the segmentation clock (2010) Proc Natl Acad Sci U S A, 107, pp. 4979-4984 
504 |a Fujiwara, N., Kurths, J., Díaz-Guilera, A., Synchronization in networks of mobile oscillators (2011) Phys Rev E, p. 83 
504 |a Peruani, F., Nicola, E.M., Morelli, L.G., Mobility induces global synchronization of oscillators in periodic extended systems (2010) New J Phys, 12, p. 093029 
504 |a Skufca, J.D., Bollt, E.M., Communication and synchronization in disconnected networks with dynamic topology: moving neighborhood networks (2004) Math Biol Eng, 1, pp. 1-13 
504 |a Uriu, K., Ares, S., Oates, A.C., Morelli, L.G., Dynamics of mobile coupled phase oscillators (2013) Phys Rev E, p. 87 
504 |a Delaune, E.A., Francois, P., Shih, N.P., Amacher, S.L., Single-cell-resolution imaging of the impact of notch signaling and mitosis on segmentation clock dynamics (2012) Dev Cell, 23, pp. 995-1005 
504 |a Soroldoni, D., Oates, A.C., Live transgenic reporters of the vertebrate embryo's segmentation clock (2011) Curr Opin Genet Dev, 21, pp. 600-605 
504 |a Turing, A.M., The chemical basis of morphogenesis (1990) Bull Math Biol, 52, pp. 153-197. , [discussion 19-52] 
504 |a Howard, J., Grill, S.W., Bois, J.S., Turing's next steps: the mechanochemical basis of morphogenesis (2011) Nat Rev Mol Cell Biol, 12, pp. 392-398 
520 3 |a Cell movement and local intercellular signaling are crucial components of morphogenesis during animal development. Intercellular signaling regulates the collective movement of a cell population via direct cell-cell contact. Cell movement, conversely, can influence local intercellular signaling by rearranging neighboring cells. Here, we first discuss theoretical models that address how intercellular signaling regulates collective cell movement during development. Examples include neural crest cell migration, convergent extension, and cell movement during vertebrate axis elongation. Second, we review theoretical studies on how cell movement may affect intercellular signaling, using the segmentation clock in zebrafish as an example. We propose that interplay between cell movement and intercellular signaling must be considered when studying morphogenesis in embryonic development. © 2014 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Wellcome Trust, WT098025MA 
536 |a Detalles de la financiación: Medical Research Council, MC_UP_1202/3 
536 |a Detalles de la financiación: Japan Society for the Promotion of Science 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica, PICT-2012-1954 
536 |a Detalles de la financiación: We thank Laurel Rohde and Daniele Soroldoni for helpful comments on the manuscript. KU is supported by the research fellowship for young scientists from the Japan Society for the Promotion of Science . LGM acknowledges support from FONCYT through PICT-2012-1954. ACO is supported by the Wellcome Trust [ WT098025MA ] and the Medical Research Council [ MC_UP_1202/3 ]. 
593 |a Theoretical Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan 
593 |a Departamento de Física, FCEyN Universidad de Buenos Aires, Argentina 
593 |a IFIBA, CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina 
593 |a MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom 
593 |a University College London, Gower Street, London, WC1E 6BT, United Kingdom 
690 1 0 |a CELL MOVEMENT 
690 1 0 |a CONVERGENT EXTENSION 
690 1 0 |a INTERCELLULAR SIGNALING 
690 1 0 |a NEURAL CREST MIGRATION 
690 1 0 |a SEGMENTATION CLOCK 
690 1 0 |a VERTEBRATE AXIS ELONGATION 
690 1 0 |a CELL MIGRATION 
690 1 0 |a CELL MOTION 
690 1 0 |a CELL SURFACE 
690 1 0 |a CELL SYNCHRONIZATION 
690 1 0 |a EMBRYO DEVELOPMENT 
690 1 0 |a INTRACELLULAR SIGNALING 
690 1 0 |a MOLECULAR CLOCK 
690 1 0 |a MORPHOGENESIS 
690 1 0 |a NEURAL CREST 
690 1 0 |a NEURAL CREST CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a REVIEW 
690 1 0 |a THEORETICAL STUDY 
690 1 0 |a ZEBRA FISH 
690 1 0 |a ANIMAL 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL MOTION 
690 1 0 |a CYTOLOGY 
690 1 0 |a EMBRYO DEVELOPMENT 
690 1 0 |a EMBRYOLOGY 
690 1 0 |a EXTRACELLULAR SPACE 
690 1 0 |a MORPHOGENESIS 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ANIMALS 
690 1 0 |a BODY PATTERNING 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL MOVEMENT 
690 1 0 |a EMBRYONIC DEVELOPMENT 
690 1 0 |a EXTRACELLULAR SPACE 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a NEURAL CREST 
690 1 0 |a SIGNAL TRANSDUCTION 
700 1 |a Morelli, L.G. 
700 1 |a Oates, A.C. 
773 0 |d Elsevier Ltd, 2014  |g v. 35  |h pp. 66-72  |x 10849521  |t Seminars in Cell and Developmental Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908703357&doi=10.1016%2fj.semcdb.2014.05.011&partnerID=40&md5=6ae438cf37863b7ba14922b4c0df9394  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.semcdb.2014.05.011  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10849521_v35_n_p66_Uriu  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10849521_v35_n_p66_Uriu  |y Registro en la Biblioteca Digital 
961 |a paper_10849521_v35_n_p66_Uriu  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75694