Study of metal complexation of cardenolides with divalent metal ions by Electrospray Ionization Mass Spectrometry

Cardenolides are natural products with positive inotropic and cytotoxic activity that are able to interact with metals, although the possible role that these interactions may play in their biological activity is not known. Mixtures of the following cardenolides: digoxigenin (DgG), gitoxigenin (GxG),...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Siless, G.E
Otros Autores: Butler, M., Cabrera, G.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07627caa a22007097a 4500
001 PAPER-14843
003 AR-BaUEN
005 20230518204526.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85019602710 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IMSPF 
100 1 |a Siless, G.E. 
245 1 0 |a Study of metal complexation of cardenolides with divalent metal ions by Electrospray Ionization Mass Spectrometry 
260 |b Elsevier B.V.  |c 2017 
270 1 0 |m Cabrera, G.M.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón II, 3° piso, Argentina; email: gabyc@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Mutschler, E., Derendorf, H., Drug Actions: Basic Principles and Therapeutic Aspects (1995), Medpharm Scientific Publishers Stuttgart; Prassas, I., Diamandis, E.P., (2008) Nat. Rev. Drug Discov., 7 (927) 
504 |a Slingerland, M., Cerella, C., Guchelaar, H.J., Diederich, M., Gelderblom, H., (2013) Invest. New Drugs, 31, p. 1087 
504 |a Crippa, G., Sverzellati, E., Giorgi-Pierfranceschi, M., Carrara, G.C., (1999) Ann. Ital. Med. Int., 14, p. 40 
504 |a Chekman, I.S., Budarin, L.I., Gorchakova, N.A., Tkachuk, V.V., Grebennikov, V.N., (1983) Farmakol. Toksikol., 46, p. 57 
504 |a Kebarle, P., Verkerk, U.H., (2009) Mass Spectrom. Rev., 28, p. 898 
504 |a Di Marco, V.B., Bombi, G.G., (2006) Mass Spectrom. Rev., 25, p. 347 
504 |a Butler, M., Arroyo Mañez, P., Cabrera, G.M., (2011) J. Am. Soc. Mass Spectrom., 22, p. 545 
504 |a Butler, M., Cabrera, G.M., (2015) J. Mass Spectrom., 50, p. 136 
504 |a Wu, Y., Guo, C., Zhang, N., Bian, G., Jiang, K., (2014) Rapid Commun. Mass Spectrom., 28, p. 2111 
504 |a Dancer, R.J., Jones, A., Fairlie, D.P., (1995) Aust. J. Chem., 48, p. 1835 
504 |a Linert, W., Kozlowski, H., Metal Ions in Neurological Systems (2012), Springer-Verlag Vienna; Ding, W.-Q., Lind, S.E., (2009) IUBMB Life, 61, p. 1013 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Gaussian09 (2009), Gaussian Inc. Wallingford, CT; Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785 
504 |a Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648 
504 |a Nicolás, I., Castro, M., (2006) J. Phys. Chem. A, 110, p. 4564 
504 |a Crotti, A.E.M., Bronze-Uhle, E.S., Nascimento, P.G.B.D., Donate, P.M., Galembeck, S.E., Vessecchia, R., Lopes, N.P., (2009) J. Mass. Spectrom., 44, p. 1733 
504 |a Abboud, J.-L.M., Foces-Foces, C., Notario, R., Trifonov, R.E., Volovodenko, A.P., Ostrovskii, V.A., Alkorta, I., Elguero, J., (2001) Eur. J. Org. Chem., 16, p. 3013 
504 |a Kaufman Katz, A., Glusker, J.P., Beebe, S.A., Bock, C.W., (1996) J. Am. Chem. Soc., 118, p. 5752 
504 |a Haas, K.L., Franz, K.J., (2009) Chem. Rev., 109, p. 4921 
504 |a Atkins, P.W., Overton, T.L., Rourke, J.P., Weller, M.T., Armstrong, F.A., Shriver and Atkins' Inorganic Chemistry (2010), fifth ed. Oxford University Press Oxford; David, W.M., Brodbelt, J.S., (2003) J. Am. Soc. Mass Spectrom., 14, p. 383 
504 |a Delgado, R., Fraústo da Silva, J.J.R., Cándida, M., Vaz, T.A., Paoletti, P., Micheloni, M., (1989) J. Chem. Soc. Dalton Trans., 133 
504 |a Corral, I., Trujillo, C., Salpin, J.-Y., Yañez, M., Ca2+ Reactivity in the gas phase. Bonding, catalytic effects and coulomb explosions (2010) Kinetics and Dynamics, from Nano to Bio-scale, , P. Paneth A. Dybala-Defratyka Springer New York 
504 |a Karamat, S., Fabian, W.M.F., (2008) J. Phys. Chem. A, 112, p. 1823 
504 |a Carl, R.D., Armentrout, P.B., (2012) J. Phys. Chem. A, 116, p. 3802 
504 |a Corral, I., Mo, O., Yañez, M., Scott, A.P., Radom, L., (2003) J. Phys. Chem. A, 107, p. 10456 
504 |a Corral, I., Mo, O., Yañez, M., Salpin, J.-Y., Tortajada, J., Radom, L., (2004) J. Phys. Chem. A, 108, p. 10080 
520 3 |a Cardenolides are natural products with positive inotropic and cytotoxic activity that are able to interact with metals, although the possible role that these interactions may play in their biological activity is not known. Mixtures of the following cardenolides: digoxigenin (DgG), gitoxigenin (GxG), digitoxigenin (DxG), uzarigenin (UzG) and a butenolide, 2(5H)-furanone (Fur), with different metal cations, namely Ca2+, Mg2+, Cu2+, Co2+ and Zn2+,were studied by Electrospray Ionization Mass Spectrometry in a Quadrupole-Time of Flight. The relative stability of the most important adducts was studied by threshold collision induced dissociation, E1/2. Computational modeling of the observed complexes with calcium was performed using DFT B3LYP/6-31G+(d,p) level of theory. Complexes of stoichiometry [nM+Me]2+, with n = 4 to 6 ligands and Me a metal cation, were observed for all studied compounds. The adducts [4M+Me]2+ corresponded to the most intense peaks in most of the mass spectra and showed the highest E1/2. GxG showed a higher tendency to form complexes with low coordination numbers. Calculations showed that the carbonyl oxygen of the butenolide moiety is the most important site of coordination and allowed the proposal of different binding modes to explain the differences observed in the GxG MS spectra. A direct relationship was observed between experimental and computational data, which allowed to predict the MS behavior of these or similar compounds. The analysis can be extrapolated to other compounds with a furanone ring, and used as an analytical tool to characterize furanone compounds, or for the differentiation of DgG and GxG. © 2017 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was supported by Universidad de Buenos Aires, CONICET, ANPCYT and MinCyT. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón II, 3° piso, Buenos Aires, C1428EHA, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II, 3° piso, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a 2(5H)-FURANONE 
690 1 0 |a CARDENOLIDES 
690 1 0 |a METAL COMPLEXATION 
700 1 |a Butler, M. 
700 1 |a Cabrera, G.M. 
773 0 |d Elsevier B.V., 2017  |g v. 419  |h pp. 44-51  |p Int. J. Mass Spectrom.  |x 13873806  |w (AR-BaUEN)CENRE-5277  |t International Journal of Mass Spectrometry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019602710&doi=10.1016%2fj.ijms.2017.04.010&partnerID=40&md5=3037a8a0d4b6ad5be441860e614a60ad  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijms.2017.04.010  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13873806_v419_n_p44_Siless  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13873806_v419_n_p44_Siless  |y Registro en la Biblioteca Digital 
961 |a paper_13873806_v419_n_p44_Siless  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75796