A cautionary note on the computation of daily mean temperatures and their trends

There are different methodologies to compute daily mean temperatures (DMT), including averaging the 24-hourly temperature values, readings at specific times throughout the day or simply averaging the minimum and maximum daily temperatures. This study provides an intercomparison of some of such metho...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Saurral, R.I
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2017
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07109caa a22008057a 4500
001 PAPER-14874
003 AR-BaUEN
005 20230518204528.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85007223612 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJCLE 
100 1 |a Saurral, R.I. 
245 1 2 |a A cautionary note on the computation of daily mean temperatures and their trends 
260 |b John Wiley and Sons Ltd  |c 2017 
270 1 0 |m Saurral, R.I.; Centro de Investigaciones del Mar y la Atmósfera (CIMA), UMI-IFAECI/CNRS, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad de Buenos AiresArgentina; email: saurral@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arguez, A., Durre, I., Applequist, S., Vose, R.S., Squires, M.F., Yin, X., Heim, R.R., Jr., Owen, T.W., NOAA's 1981–2010 U.S. Climate Normals: An overview (2012) Bull. Am. Meteorol. Soc., 93, pp. 1687-1697 
504 |a Baker, D.G., Effect of observation time on mean temperature estimation (1975) J. Appl. Meteorol., 14, pp. 471-476 
504 |a Dall'Amico, M., Hornsteiner, M., A simple method for estimating daily and monthly mean temperatures from daily minima and maxima (2006) Int. J. Climatol., 26, pp. 1929-1936 
504 |a Harris, S.A., Pedersen, J.H., Comparison of three methods of calculating air temperature from electronic measurements (1995) Z. Geomorph., 39, pp. 203-210 
504 |a Kalma, J.D., A comparison of methods for computing daily mean air temperature and humidity (1968) Weather, 23, pp. 248-254 
504 |a Karl, T.R., Williams, C.N., Young, P.J., Wendland, W.M., A model to estimate the time of observation bias associated with monthly mean maximum, minimum and mean temperatures for the United States (1986) J. Clim. Appl. Meteorol., 25, pp. 145-160 
504 |a Kendall, M., (1955) Rank Correlation Methods, p. 260. , 5th edn, Kendall M, Gibbons J (eds)., Oxford University Press, New York, NY 
504 |a Leathers, D.J., Palecki, M.A., Robinson, D.A., Dewey, K.F., Climatology of the daily temperature range annual cycle in the United States (1998) Clim. Res., 9, pp. 197-211 
504 |a Ma, Y., Guttorp, P., Estimating daily mean temperature from synoptic climate observations (2013) Int. J. Climatol., 33, pp. 1264-1269 
504 |a Mann, Nonparametric tests against trends (1945) Econometrica, 13, pp. 245-259 
504 |a Reicosky, D.C., Winkelman, L.J., Baker, J.M., Baker, D.G., Accuracy of hourly air temperatures calculated from daily minima and maxima (1989) Agric. For. Meteorol., 46, pp. 193-209 
504 |a Schwerdtfeger, W., Climates of Central and South America (1976) World Survey of Climatology, 12, p. 532. , In, Elsevier, Amsterdam 
504 |a Weiss, A., Hays, C.J., Calculating daily mean air temperatures by different methods: implications from a non-linear algorithm (2005) Agric. For. Meteorol., 128, pp. 57-69 
504 |a Wilks, D.S., (2006) Statistical Methods in the Atmospheric Sciences, p. 141. , 2nd edn., Academic Press, Waltham 
520 3 |a There are different methodologies to compute daily mean temperatures (DMT), including averaging the 24-hourly temperature values, readings at specific times throughout the day or simply averaging the minimum and maximum daily temperatures. This study provides an intercomparison of some of such methods applied to six meteorological stations in Argentina with continuous hourly measurements for a period of more than 24 years. Results show that differences arising from the various methodologies are largely dependent on the local weather conditions, particularly those related to cloud cover and wind intensity, while the role of air moisture is less important. Furthermore, trends derived from DMT estimates using different methodologies are found to be highly sensitive to the chosen method. In fact, statistically insignificant trends could be significant should other methodologies to calculate DMT had been used. This result could be of importance for diverse scientific areas such as agriculture or climate warming studies. © 2016 Royal Meteorological Society  |l eng 
536 |a Detalles de la financiación: UBACyT-20020100100803 
536 |a Detalles de la financiación: Universidad de Buenos Aires, PIP-11220120100586 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The author would like to thank the two anonymous reviewers for critically reading this work and providing suggestions that helped improve and clarify the paper. Thanks are due to the National Weather Service (Servicio Meteorol?gico Nacional) of Argentina for providing the hourly and daily meteorological data used in this manuscript. Also acknowledged is the Data Bank at the Departamento de Ciencias de la Atm?sfera y los Oc?anos (DCAO; FCEN-UBA) for compiling the information. This work was partially funded by Grants UBACyT-20020100100803 from Universidad de Buenos Aires and PIP-11220120100586 from CONICET. 
593 |a Centro de Investigaciones del Mar y la Atmósfera (CIMA), UMI-IFAECI/CNRS, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a CLOUD COVER 
690 1 0 |a DAILY MEAN TEMPERATURE 
690 1 0 |a GLOBAL WARMING 
690 1 0 |a TEMPERATURE TRENDS 
690 1 0 |a WIND INTENSITY 
690 1 0 |a GLOBAL WARMING 
690 1 0 |a CLOUD COVER 
690 1 0 |a DAILY TEMPERATURES 
690 1 0 |a LOCAL WEATHER CONDITIONS 
690 1 0 |a MEAN TEMPERATURE 
690 1 0 |a METEOROLOGICAL STATION 
690 1 0 |a TEMPERATURE TRENDS 
690 1 0 |a TEMPERATURE VALUES 
690 1 0 |a WIND INTENSITY 
690 1 0 |a METEOROLOGY 
690 1 0 |a CLOUD COVER 
690 1 0 |a DIURNAL VARIATION 
690 1 0 |a GLOBAL WARMING 
690 1 0 |a TEMPERATURE GRADIENT 
690 1 0 |a TREND ANALYSIS 
690 1 0 |a WARMING 
690 1 0 |a WIND VELOCITY 
651 4 |a ARGENTINA 
773 0 |d John Wiley and Sons Ltd, 2017  |g v. 37  |h pp. 3743-3752  |k n. 9  |p Int. J. Climatol.  |x 08998418  |w (AR-BaUEN)CENRE-40  |t International Journal of Climatology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007223612&doi=10.1002%2fjoc.4941&partnerID=40&md5=05d29366b2e80eb307bf0ebda3fefa9e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/joc.4941  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08998418_v37_n9_p3743_Saurral  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08998418_v37_n9_p3743_Saurral  |y Registro en la Biblioteca Digital 
961 |a paper_08998418_v37_n9_p3743_Saurral  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75827