Clique coloring B1-EPG graphs

We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a gr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, F.
Otros Autores: Mazzoleni, M.P, Stein, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04887caa a22005657a 4500
001 PAPER-15024
003 AR-BaUEN
005 20230518204539.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85011982238 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a DSMHA 
100 1 |a Bonomo, F. 
245 1 0 |a Clique coloring B1-EPG graphs 
260 |b Elsevier B.V.  |c 2017 
270 1 0 |m Bonomo, F.; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de ComputaciónArgentina; email: fbonomo@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebö, A., Coloring the maximal cliques of graphs (2004) SIAM J. Discrete Math, 17 (3), pp. 361-376 
504 |a Bondy, J.A., Murty, U.S.R., Graph Theory (2007), Springer New York; Campos, C.N., Dantas, S., de Mello, C.P., Colouring clique-hypergraphs of circulant graphs (2013) Graphs Combin, 29 (6), pp. 1713-1720 
504 |a Cerioli, M.R., Korenchendler, A.L., Clique-Coloring circular-arc graphs (2009) Electron. Notes Discrete Math, 35, pp. 287-292 
504 |a Cerioli, M.R., Petito, P., Clique-coloring UE and UEH graphs (2008) Electron. Notes Discrete Math, 30, pp. 201-206 
504 |a Charbit, P., Penev, I., Thomassé, S., Trotignon, N., Perfect graphs of arbitrarily large clique-chromatic number (2016) J. Combin. Theory Ser. B, 116, pp. 456-464 
504 |a Duffus, D., Kierstead, H.A., Trotter, W.T., Fibres and ordered set coloring (1991) J. Combin. Theory Ser. A, 58 (1), pp. 158-164 
504 |a Duffus, D., Sands, B., Sauer, N., Woodrow, R.E., Two-colouring all two-element maximal antichains (1991) J. Combin. Theory Ser. A, 57 (1), pp. 109-116 
504 |a Epstein, D., Golumbic, M.C., Morgenstern, G., Approximation algorithms for B1-EPG graphs (2013) Algorithms and Data Structures - 13th International Symposium, 8037, pp. 328-340. , Springer, WADS 2013, London, on, Canada, August 12-14, Proceedings, Lecture Notes in Computer Science 
504 |a Golumbic, M.C., Lipshteyn, M., Stern, M., Edge intersection graphs of single bend paths on a grid (2009) Networks, 54 (3), pp. 130-138 
504 |a Heldt, D., Knauer, K.B., Ueckerdt, T., Edge-intersection graphs of grid paths: The bend-number (2014) Discrete Appl. Math, 167, pp. 144-162 
504 |a Kratochvíl, J., Tuza, Z., On the complexity of bicoloring clique hypergraphs of graphs (2002) J. Algorithms, 45 (1), pp. 40-54 
504 |a Mycielski, J., Sur le coloriage des graphs (1955) Colloq. Math, 3, pp. 161-162 
504 |a Poon, H., (2000) Coloring Clique Hypergraphs (Master's thesis), , West Virginia University 
504 |a Rose, D.J., Tarjan, R.E., Lueker, G.S., Algorithmic aspects of vertex elimination on graphs (1976) SIAM J. Comput, 5 (2), pp. 266-283 
520 3 |a We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it. © 2017 Elsevier B.V.  |l eng 
593 |a Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires. Instituto de Investigación en Ciencias de la Computación (ICC), Buenos Aires, Argentina 
593 |a CONICET and Departamento de Matemática, FCE-UNLP, La Plata, Argentina 
593 |a Departamento de Ingeniería Matemática, Universidad de Chile, Santiago, Chile 
690 1 0 |a CLIQUE COLORING 
690 1 0 |a EDGE INTERSECTION GRAPHS 
690 1 0 |a PATHS ON GRIDS 
690 1 0 |a POLYNOMIAL TIME ALGORITHM 
700 1 |a Mazzoleni, M.P. 
700 1 |a Stein, M. 
773 0 |d Elsevier B.V., 2017  |g v. 340  |h pp. 1008-1011  |k n. 5  |p Discrete Math  |x 0012365X  |w (AR-BaUEN)CENRE-309  |t Discrete Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011982238&doi=10.1016%2fj.disc.2017.01.019&partnerID=40&md5=4595b79fd83f9fd773b983f9766b0a37  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.disc.2017.01.019  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0012365X_v340_n5_p1008_Bonomo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v340_n5_p1008_Bonomo  |y Registro en la Biblioteca Digital 
961 |a paper_0012365X_v340_n5_p1008_Bonomo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75977