TarSeqQC: Quality control on targeted sequencing experiments in R

Targeted sequencing (TS) is growing as a screening methodology used in research and medical genetics to identify genomic alterations causing human diseases. In general, a list of possible genomic variants is derived from mapped reads through a variant calling step. This processing step is usually ba...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Merino, G.A
Otros Autores: Murua, Y.A, Fresno, C., Sendoya, J.M, Golubicki, M., Iseas, S., Coraglio, M., Podhajcer, O.L, Llera, A.S, Fernández, E.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08869caa a22008297a 4500
001 PAPER-15041
003 AR-BaUEN
005 20230518204540.0
008 170725s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85017340504 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a HUMUE 
100 1 |a Merino, G.A. 
245 1 0 |a TarSeqQC: Quality control on targeted sequencing experiments in R 
260 |b John Wiley and Sons Inc.  |c 2017 
270 1 0 |m Merino, G.A.; Ua Area Cs. Agr. Ing. Bio. Y S, Conicet, Universidad Católica de CórdobaArgentina; email: gmerino@bdmg.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Becker, K., Vollbrecht, C., Koitzsch, U., Koenig, K., Fassunke, J., Huss, S., Merkelbach-Bruse, S., Deep ion sequencing of amplicon adapter ligated libraries: A novel tool in molecular diagnostics of formalin fixed and paraffin embedded tissues (2013) Journal of Clinical Pathology, 66, pp. 803-806 
504 |a Comprehensive molecular characterization of human colon and rectal cancer (2012) Nature, 487, pp. 330-337 
504 |a Chang, F., Li, M.M., Clinical application of amplicon-based next-generation sequencing in cancer (2013) Cancer Genetics, 206, pp. 413-419 
504 |a Hadd, A.G., Houghton, J., Choudhary, A., Sah, S., Chen, L., Marko, A.C., Latham, G.J., Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens (2013) The Journal of Molecular Diagnostics, 15, pp. 234-247 
504 |a Harismendy, O., Schwab, R.B., Alakus, H., Yost, S.E., Matsui, H., Hasteh, F., Frazer, K.A., Evaluation of ultra-deep targeted sequencing for personalized breast cancer care (2013) Breast Cancer Research, 15, p. 115 
504 |a Hummel, M., Bonnin, S., Lowy, E., Roma, G., TEQC: An R package for quality control in target capture experiments (2011) Bioinformatics, 27, pp. 1316-1317 
504 |a Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760 
504 |a Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., The Sequence Alignment/Map (SAM) format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079 
504 |a Martínez-Alcántara, A., Ballesteros, E., Feng, C., Rojas, M., Koshinsky, H., Fofanov, V.Y., Fofanov, Y., PIQA: Pipeline for Illumina G1 genome analyzer data quality assessment (2009) Bioinformatics, 25, pp. 2438-2439 
504 |a Meldrum, C., Doyle, M.A., Tothill, R.W., Next-generation sequencing for cancer diagnostics: A practical perspective (2011) The Clinical Biochemist Reviews, 32, pp. 177-195 
504 |a Merino, G.A., Fresno, C., Koile, D., Yankilevich, P., Sendoya, J.M., Oliver, J., Fernández, E.A., An exploration tool for quality analysis in targeted sequencing experiments (2015) IFMBE Proceedings, 49, pp. 659-662 
504 |a Metzker, M.L., Sequencing technologies—The next generation (2010) Nature Reviews Genetics, 11, pp. 31-46 
504 |a Morgan, M., Anders, S., Lawrence, M., Aboyoun, P., Pages, H., Gentleman, R., ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data (2009) Bioinformatics, 25, pp. 2607-2608 
504 |a Mouradov, D., Sloggett, C., Jorissen, R.N., Love, C.G., Li, S., Burgess, A.W., Sieber, O.M., Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer (2014) Cancer Research, 74, pp. 3238-3247 
504 |a Nielsen, R., Paul, J.S., Albrechtsen, A., Song, Y.S., Genotype and SNP calling from next-generation sequencing data (2011) Nature Reviews Genetics, 126, pp. 443-451 
504 |a Nieuwenhuis, M.H., Vasen, H.F.A., Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): A review of the literature (2007) Critical Reviews in Oncology/Hematology, 61, pp. 153-161 
504 |a Nikiforova, M.N., Wald, A.I., Roy, S., Durso, M.B., Nikiforov, Y.E., Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer (2013) The sJournal of Clinical Endocrinology & Metabolism, 98, pp. E1852-E1860 
504 |a Rizzo, J.M., Buck, M.J., Key principles and clinical applications of “next-generation” DNA sequencing (2012) Cancer Prevention Research, 5, pp. 887-900 
504 |a Satya, R.V., Di Carlo, J., Edge effects in calling variants from targeted amplicon sequencing (2014) BMC Genomics, 15, p. 1073 
504 |a Schweiger, M.R., Kerick, M., Timmermann, B., Isau, M., The power of NGS technologies to delineate the genome organization in cancer: From mutations to structural variations and epigenetic alterations (2011) Cancer and Metastasis Reviews, 30, pp. 199-210 
504 |a Segditsas, S., Tomlinson, I., Colorectal cancer and genetic alterations in the Wnt pathway (2006) Oncogene, 25, pp. 7531-7537 
504 |a Yost, S.E., Alakus, H., Matsui, H., Schwab, R.B., Jepsen, K., Frazer, K.A., Harismendy, O., Mutascope: Sensitive detection of somatic mutations from deep amplicon sequencing (2013) Bioinformatics, 29, pp. 1908-1909 
520 3 |a Targeted sequencing (TS) is growing as a screening methodology used in research and medical genetics to identify genomic alterations causing human diseases. In general, a list of possible genomic variants is derived from mapped reads through a variant calling step. This processing step is usually based on variant coverage, although it may be affected by several factors. Therefore, undercovered relevant clinical variants may not be reported, affecting pathology diagnosis or treatment. Thus, a prior quality control of the experiment is critical to determine variant detection accuracy and to avoid erroneous medical conclusions. There are several quality control tools, but they are focused on issues related to whole-genome sequencing. However, in TS, quality control should assess experiment, gene, and genomic region performances based on achieved coverages. Here, we propose TarSeqQC R package for quality control in TS experiments. The tool is freely available at Bioconductor repository. TarSeqQC was used to analyze two datasets; low-performance primer pools and features were detected, enhancing the quality of experiment results. Read count profiles were also explored, showing TarSeqQC's effectiveness as an exploration tool. Our proposal may be a valuable bioinformatic tool for routinely TS experiments in both research and medical genetics. © 2017 Wiley Periodicals, Inc.  |l eng 
536 |a Detalles de la financiación: BOD/2016, UCC, Universidad Católica de Córdoba 
536 |a Detalles de la financiación: PBIT 015/13, MINCyT, Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: PPL04/2011, FonCyT, Fondo para la Investigación Científica y Tecnológica 
536 |a Detalles de la financiación: PPL06/2011, FonCyT, Fondo para la Investigación Científica y Tecnológica 
593 |a Ua Area Cs. Agr. Ing. Bio. Y S, Conicet, Universidad Católica de Córdoba, Córdoba, Argentina 
593 |a Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina 
593 |a Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina 
593 |a Intergrupo Argentino para el Tratamiento de los Tumores Gastrointestinales, Buenos Aires, Argentina 
593 |a Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina 
690 1 0 |a CANCER PANEL 
690 1 0 |a EXPERIMENT PERFORMANCE 
690 1 0 |a MEDICAL GENETICS 
690 1 0 |a QUALITY CONTROL 
690 1 0 |a R PACKAGE 
690 1 0 |a TARGETED SEQUENCING 
700 1 |a Murua, Y.A. 
700 1 |a Fresno, C. 
700 1 |a Sendoya, J.M. 
700 1 |a Golubicki, M. 
700 1 |a Iseas, S. 
700 1 |a Coraglio, M. 
700 1 |a Podhajcer, O.L. 
700 1 |a Llera, A.S. 
700 1 |a Fernández, E.A. 
773 0 |d John Wiley and Sons Inc., 2017  |g v. 38  |h pp. 494-502  |k n. 5  |x 10597794  |t Hum. Mutat. 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017340504&doi=10.1002%2fhumu.23204&partnerID=40&md5=752e32cfc925d9264ab7706a533b26c7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/humu.23204  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10597794_v38_n5_p494_Merino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10597794_v38_n5_p494_Merino  |y Registro en la Biblioteca Digital 
961 |a paper_10597794_v38_n5_p494_Merino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75994