Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes

We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Balzarotti, F.
Otros Autores: Eilers, Y., Gwosch, K.C, Gynnå, A.H, Westphal, V., Stefani, F.D, Elf, J., Hell, S.W
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09498caa a22014177a 4500
001 PAPER-15213
003 AR-BaUEN
005 20230518204554.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85007087066 
024 7 |2 cas  |a protein, 67254-75-5; DNA, 9007-49-2; DNA; Luminescent Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SCIEA 
100 1 |a Balzarotti, F. 
245 1 0 |a Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes 
260 |b American Association for the Advancement of Science  |c 2017 
270 1 0 |m Balzarotti, F.; Department of NanoBiophotonics, Max Planck Institute For Biophysical ChemistryGermany; email: francisco.balzarotti@mpibpc.mpg.de 
506 |2 openaire  |e Política editorial 
504 |a Hell, S.W., Wichmann, J., (1994) Opt. Lett., 19, pp. 780-782 
504 |a Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 8206-8210 
504 |a Betzig, E., (2006) Science, 313, pp. 1642-1645 
504 |a Rust, M.J., Bates, M., Zhuang, X., (2006) Nat. Methods, 3, pp. 793-796 
504 |a Hess, S.T., Girirajan, T.P.K., Mason, M.D., (2006) Biophys. J., 91, pp. 4258-4272 
504 |a Hell, S.W., (2007) Science, 316, pp. 1153-1158 
504 |a Deschout, H., (2014) Nat. Methods, 11, pp. 253-266 
504 |a Heisenberg, W., (1930) The Physical Principles of the Quantum Theory, , Univ. of Chicago Press, Chicago 
504 |a Bobroff, N., (1986) Rev. Sci. Instrum., 57, pp. 1152-1157 
504 |a Thompson, R.E., Larson, D.R., Webb, W.W., (2002) Biophys. J., 82, pp. 2775-2783 
504 |a Mortensen, K.I., Churchman, L.S., Spudich, J.A., Flyvbjerg, H., (2010) Nat. Methods, 7, pp. 377-381 
504 |a Engelhardt, J., (2011) Nano Lett., 11, pp. 209-213 
504 |a Lew, M.D., Backlund, M.P., Moerner, W.E., (2013) Nano Lett, 13, pp. 3967-3972 
504 |a Yildiz, A., (2003) Science, 300, pp. 2061-2065 
504 |a Elf, J., Li, G.-W., Xie, X.S., (2007) Science, 316, pp. 1191-1194 
504 |a Kusumi, A., Tsunoyama, T.A., Hirosawa, K.M., Kasai, R.S., Fujiwara, T.K., (2014) Nat. Chem. Biol., 10, pp. 524-532 
504 |a Sahl, S.J., Leutenegger, M., Hilbert, M., Hell, S.W., Eggeling, C., (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 6829-6834 
504 |a Vogelsang, J., (2008) Angew. Chem. Int. Ed. Engl., 47, pp. 5465-5469 
504 |a Zheng, Q., (2014) Chem. Soc. Rev., 43, pp. 1044-1056 
504 |a Weisenburger, S., (2014) ChemPhysChem, 15, pp. 763-770 
504 |a Sharonov, A., Hochstrasser, R.M., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 18911-18916 
504 |a Dai, M., Jungmann, R., Yin, P., (2016) Nat. Nanotechnol., 11, pp. 798-807 
504 |a Pellegrotti, J.V., (2014) Nano Lett, 14, pp. 2831-2836 
504 |a Sanamrad, A., (2014) Proc. Natl. Acad. Sci. U.S.A, 111, pp. 11413-11418 
504 |a Hell, S.W., (2015) Angew. Chem. Int. Ed. Engl., 54, pp. 8054-8066 
504 |a Hell, S.W., Method of and apparatus for tracking a particle, particularly a single molecule, in a sample (2013), Patent application WO, published 23 May; Hell, S.W., High-resolution fluorescence microscopy with a structured excitation beam (2015), Patent application WO, published 2 July; Schmied, J.J., (2012) Nat. Methods, 9, pp. 1133-1134 
504 |a Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M., Zhuang, X., (2011) Nat. Methods, 8, pp. 1027-1036 
504 |a McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W., Looger, L.L., (2009) Nat. Methods, 6, pp. 131-133 
504 |a Vestergaard, C.L., (2016) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 94 
504 |a Michalet, X., Berglund, A.J., (2012) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 85 
504 |a Schuler, B., Lipman, E.A., Eaton, W.A., (2002) Nature, 419, pp. 743-747 
504 |a Pertsinidis, A., Zhang, Y., Chu, S., (2010) Nature, 466, pp. 647-651 
504 |a Voie, A.H., Burns, D.H., Spelman, F.A., (1993) J. Microsc., 170, pp. 229-236 
504 |a Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., (1986) Opt. Lett., 11, pp. 288-290 
504 |a Cohen, A.E., Moerner, W.E., (2005) Appl. Phys. B, 86 
520 3 |a We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved.  |l eng 
536 |a Detalles de la financiación: European Research Council 
536 |a Detalles de la financiación: Knut och Alice Wallenbergs Stiftelse, WO 2015/097000, WO 2013/072273 
536 |a Detalles de la financiación: We thank F. Persson for early discussions about implementations of the concept and initial tracking experiments. E. D'Este and S. J. Sahl are acknowledged for critical reading. K.C.G. and F.D.S. thank the Cusanuswerk for a stipend and the Max Planck Society for a partner group grant, respectively. A.H.G. and J.E. acknowledge the European Research Council and the Knut and Alice Wallenberg Foundation for funding. S.W.H. is inventor on patent applications WO 2013/072273 and WO 2015/097000 submitted by the Max Planck Society that cover basic principles and arrangements of MINFLUX. Further patent applications with F.B., Y.E., K.C.G., and S.W.H. as inventors have been submitted by the Max Planck Society, covering selected embodiments and procedures. S.W.H. consults and owns shares of Abberior Instruments GmbH, a manufacturer of superresolution microscopes. 
593 |a Department of NanoBiophotonics, Max Planck Institute For Biophysical Chemistry, Göttingen, Germany 
593 |a Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden 
593 |a Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany 
593 |a Optical Nanoscopy Division, German Cancer Research Center (DKFZ), Heidelberg, Germany 
690 1 0 |a FLUORESCENT DYE 
690 1 0 |a PROTEIN 
690 1 0 |a DNA 
690 1 0 |a PHOTOPROTEIN 
690 1 0 |a CELL ORGANELLE 
690 1 0 |a CELLS AND CELL COMPONENTS 
690 1 0 |a COLIFORM BACTERIUM 
690 1 0 |a EQUIPMENT 
690 1 0 |a FLUORESCENCE 
690 1 0 |a IMAGE RESOLUTION 
690 1 0 |a LIGHT INTENSITY 
690 1 0 |a PROTEIN 
690 1 0 |a ARTICLE 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a EXCITATION 
690 1 0 |a FLUORESCENCE 
690 1 0 |a FLUORESCENCE MICROSCOPY 
690 1 0 |a LIGHT 
690 1 0 |a MACROMOLECULE 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NANOIMAGING 
690 1 0 |a PHOTON 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a RIBOSOME SUBUNIT 
690 1 0 |a SIMULATION 
690 1 0 |a CHEMISTRY 
690 1 0 |a FLUORESCENCE IMAGING 
690 1 0 |a NANOTECHNOLOGY 
690 1 0 |a PHOTON 
690 1 0 |a PROCEDURES 
690 1 0 |a SINGLE MOLECULE IMAGING 
690 1 0 |a SMALL RIBOSOMAL SUBUNIT 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a DNA 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a LUMINESCENT PROTEINS 
690 1 0 |a MICROSCOPY, FLUORESCENCE 
690 1 0 |a NANOTECHNOLOGY 
690 1 0 |a OPTICAL IMAGING 
690 1 0 |a PHOTONS 
690 1 0 |a RIBOSOME SUBUNITS, SMALL, BACTERIAL 
690 1 0 |a SINGLE MOLECULE IMAGING 
650 1 7 |2 spines  |a PRECISION 
700 1 |a Eilers, Y. 
700 1 |a Gwosch, K.C. 
700 1 |a Gynnå, A.H. 
700 1 |a Westphal, V. 
700 1 |a Stefani, F.D. 
700 1 |a Elf, J. 
700 1 |a Hell, S.W. 
773 0 |d American Association for the Advancement of Science, 2017  |g v. 355  |h pp. 606-612  |k n. 6325  |p Sci.  |x 00368075  |w (AR-BaUEN)CENRE-344  |t Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007087066&doi=10.1126%2fscience.aak9913&partnerID=40&md5=f8741c388c0599d441f0928b6c877e19  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1126/science.aak9913  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00368075_v355_n6325_p606_Balzarotti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00368075_v355_n6325_p606_Balzarotti  |y Registro en la Biblioteca Digital 
961 |a paper_00368075_v355_n6325_p606_Balzarotti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 76166