AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication
We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock dow...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , , , , , , , , , , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Wiley-Liss Inc.
2016
|
Materias: | |
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 16691caa a22017537a 4500 | ||
---|---|---|---|
001 | PAPER-15702 | ||
003 | AR-BaUEN | ||
005 | 20230518204629.0 | ||
008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-84975074244 | |
024 | 7 | |2 cas |a adenosine triphosphatase, 37289-25-1, 9000-83-3; gamma glutamyltransferase, 85876-02-4; glucosidase, 9033-06-1; lactate dehydrogenase, 9001-60-9; pazopanib, 444731-52-6, 635702-64-6; sorafenib, 284461-73-0 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
030 | |a JCLLA | ||
100 | 1 | |a Booth, L. | |
245 | 1 | 0 | |a AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication |
260 | |b Wiley-Liss Inc. |c 2016 | ||
270 | 1 | 0 | |m Dent, P.; Department of Biochemistry and Molecular Biology, Virginia Commonwealth UniversityUnited States; email: pdent@vcu.edu |
506 | |2 openaire |e Política editorial | ||
504 | |a Anderson, K., Stott, E.J., Wertz, G.W., Intracellular processing of the human respiratory syncytial virus fusion glycoprotein: Amino acid substitutions affecting folding, transport and cleavage (1992) J Gen Virol, 73, pp. 1177-1188 | ||
504 | |a Bolt, G., The measles virus (MV) glycoproteins interact with cellular chaperones in the endoplasmic reticulum and MV infection upregulates chaperone expression (2001) Arch Virol, 146, pp. 2055-2068 | ||
504 | |a Booth, L., Cazanave, S.C., Hamed, H.A., Yacoub, A., Ogretmen, B., Chen, C.S., Grant, S., Dent, P., OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependent increases in tumor cell killing (2012) Cancer Biol Ther, 13, pp. 224-236 | ||
504 | |a Booth, L., Roberts, J.L., Cruickshanks, N., Grant, S., Poklepovic, A., Dent, P., Regulation of OSU-03012 toxicity by ER stress proteins and ER stress-inducing drugs (2014) Mol Cancer Ther, 13, pp. 2384-2398 | ||
504 | |a Booth, L., Roberts, J.L., Tavallai, M., Nourbakhsh, A., Chuckalovcak, J., Carter, J., Poklepovic, A., Dent, P., OSU-03012 and viagra treatment inhibits the activity of multiple chaperone proteins and disrupts the blood-brain barrier: Implications for anti-cancer therapies (2015) J Cell Physiol, 230, pp. 1982-1998 | ||
504 | |a Booth, L., Roberts, J.L., Cash, D.R., Tavallai, S., Jean, S., Fidanza, A., Cruz-Luna, T., Dent, P., GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease (2015) J Cell Physiol, 230, pp. 1661-1676 | ||
504 | |a Booth, L., Shuch, B., Albers, T., Roberts, J.L., Tavallai, M., Proniuk, S., Zukiwski, A., Dent, P., Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function (2016) Oncotarget, 7, pp. 12975-12996 | ||
504 | |a Booth, L., Roberts, J.L., Tavallai, M., Webb, T., Leon, D., Chen, J., McGuire, W.P., Dent, P., The afatinib resistance of in vivo generated H1975 lung cancer cell clones is mediated by SRC/ERBB3/c-KIT/c-MET compensatory survival signaling (2016) Oncotarget, 7, pp. 19620-19630 | ||
504 | |a Booth, L., Roberts, J.L., Tavallai, M., Chuckalovcak, J., Stringer, D.K., Koromilas, A.E., Boone, D.L., Dent, P., [Pemetrexed+Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling (2016) Oncotarget, 7, pp. 23608-23632 | ||
504 | |a Buckheit, R.W., Jr., Swanstrom, R., Characterization of an HIV-1 isolate displaying an apparent absence of virion-associated reverse transcriptase activity (1991) AIDS Res Hum Retroviruses, 7, pp. 295-302 | ||
504 | |a Carón, R.W., Yacoub, A., Li, M., Zhu, X., Mitchell, C., Hong, Y., Hawkins, W., Dent, P., Activated forms of H-RAS and K-RAS differentially regulate membrane association of PI3K, PDK-1, and AKT and the effect of therapeutic kinase inhibitors on cell survival (2005) Mol Cancer Ther, 4, pp. 257-270 | ||
504 | |a Chang, J., Block, T.M., Guo, J.T., Antiviral therapies targeting host ER alpha-glucosidases: Current status and future directions (2013) Antiviral Res, 99, pp. 251-260 | ||
504 | |a Dabo, S., Meurs, E.F., DsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection (2012) Viruses, 4, pp. 2598-2635 | ||
504 | |a De Clercq, E., Ebola virus (EBOV) infection: Therapeutic strategies (2015) Biochem Pharmacol, 93, pp. 1-10 | ||
504 | |a Dimcheff, D.E., Faasse, M.A., McAtee, F.J., Portis, J.L., Endoplasmic reticulum (ER) stress induced by a neurovirulent mouse retrovirus is associated with prolonged BiP binding and retention of a viral protein in the ER (2004) J Biol Chem, 279, pp. 33782-33790 | ||
504 | |a Earl, P.L., Moss, B., Doms, R.W., Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein (1991) J Virol, 65, pp. 2047-2055 | ||
504 | |a Gao, M., Yeh, P.Y., Lu, Y.S., Hsu, C.H., Chen, K.F., Lee, W.C., Feng, W.C., Cheng, A.L., OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma (2008) Cancer Res, 68, pp. 9348-9357 | ||
504 | |a Gober, M.D., Wales, S.Q., Aurelian, L., Herpes simplex virus type 2 encodes a heat shock protein homologue with apoptosis regulatory functions (2005) Front Biosci, 10, pp. 2788-2803 | ||
504 | |a Goodwin, E.C., Lipovsky, A., Inoue, T., Magaldi, T.G., Edwards, A.P., Van Goor, K.E., Paton, A.W., DiMaio, D., BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection (2011) MBio, 2, pp. e00101-e00111 | ||
504 | |a Hogue, B.G., Nayak, D.P., Synthesis and processing of the influenza virus neuraminidase, a type II transmembrane glycoprotein (1992) Virology, 188, pp. 510-517 | ||
504 | |a Lee, A.S., GRP78 induction in cancer: Therapeutic and prognostic implications (2007) Cancer Res, 67, pp. 3496-3499 | ||
504 | |a Liu, J., Zhang, L., Zhu, X., Bai, J., Wang, L., Wang, X., Jiang, P., Heat shock protein 27 is involved in PCV2 infection in PK-15 cells (2014) Virus Res, 189, pp. 235-242 | ||
504 | |a Luo, B., Lee, A.S., The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies (2013) Oncogene, 32, pp. 805-818 | ||
504 | |a Mathew, S.S., Della Selva, M.P., Burch, A.D., Modification and reorganization of the cytoprotective cellular chaperone Hsp27 during herpes simplex virus type 1 infection (2009) J Virol, 83, pp. 9304-9312 | ||
504 | |a Mirazimi, A., Svensson, L., ATP is required for correct folding and disulfide bond formation of rotavirus VP7 (2000) J Virol, 74, pp. 8048-8052 | ||
504 | |a Mohr, E.L., McMullan, L.K., Lo, M.K., Spengler, J.R., Bergeron, É., Albariño, C.G., Shrivastava-Ranjan, P., Flint, M., Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses (2015) Antiviral Res, 120, pp. 40-47 | ||
504 | |a Ni, M., Lee, A.S., ER chaperones in mammalian development and human diseases (2007) FEBS Lett, 581, pp. 3641-3651 | ||
504 | |a Park, M.A., Yacoub, A., Rahmani, M., Zhang, G., Hart, L., Hagan, M.P., Calderwood, S.K., Dent, P., OSU-03012 stimulates PKR-like endoplasmic reticulum-dependent increases in 70-kDa heat shock protein expression, attenuating its lethal actions in transformed cells (2008) Mol Pharmacol, 73, pp. 1168-1184 | ||
504 | |a Rathore, A.P.S., Ng, M.L., Vasudevan, S.G., Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphorylation (2013) Virol J, 10, p. 36 | ||
504 | |a Reid, S.P., Shurtleff, A.C., Costantino, J.A., Tritsch, S.R., Retterer, C., Spurgers, K.B., Bavari, S., HSPA5 is an essential host factor for Ebola virus infection (2014) Antiviral Res, 109, pp. 171-174 | ||
504 | |a Roberts, J.L., Tavallai, M., Nourbakhsh, A., Fidanza, A., Cruz-Luna, T., Smith, E., Siembida, P., Dent, P., GRP78/Dna K is a target for Nexavar/Stivarga/Votrient in the treatment of human malignancies, viral infections and bacterial diseases (2015) J Cell Physiol, 230, pp. 2552-2578 | ||
504 | |a Roux, L., Selective and transient association of Sendai virus HN glycoprotein with BiP (1990) Virology, 175, pp. 161-166 | ||
504 | |a San-Miguel, B., Álvarez, M., Culebras, J.M., González-Gallego, J., Tuñón, M.J., N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure (2006) Apoptosis, 11, pp. 1945-1957 | ||
504 | |a Tavallai, M., Hamed, H.A., Roberts, J.L., Cruickshanks, N., Chuckalovcak, J., Poklepovic, A., Booth, L., Dent, P., Nexavar/Stivarga and viagra interact to kill tumor cells (2015) J Cell Physiol, 230, pp. 2281-2298 | ||
504 | |a Tsai, Y.L., Zhang, Y., Tseng, C.C., Stanciauskas, R., Pinaud, F., Lee, A.S., Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface (2015) J Biol Chem, 290, pp. 8049-8064 | ||
504 | |a Tuñón, M.J., Sánchez-Campos, S., García-Ferreras, J., Álvarez, M., Jorquera, F., González-Gallego, J., Rabbit hemorrhagic viral disease: Characterization of a new animal model of fulminant liver failure (2003) J Lab Clin Med, 141, pp. 272-278 | ||
504 | |a Tuñón, M.J., San-Miguel, B., Crespo, I., Jorquera, F., Santamaría, E., Álvarez, M., Prieto, J., González-Gallego, J., Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus (2011) J Pineal Res, 50, pp. 38-45 | ||
504 | |a Vashist, S., Urena, L., Gonzalez-Hernandez, M.B., Choi, J., de Rougemont, A., Rocha-Pereira, J., Neyts, J., Goodfellow, I., Molecular chaperone Hsp90 is a therapeutic target for noroviruses (2015) J Virol, 89, pp. 6352-6363 | ||
504 | |a Xu, A., Bellamy, A.R., Taylor, J.A., BiP (GRP78) and endoplasmin (GRP94) are induced following rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion component (1998) J Virol, 72, pp. 9865-9872 | ||
504 | |a Yacoub, A., Park, M.A., Hanna, D., Hong, Y., Mitchell, C., Pandya, A.P., Harada, H., Dent, P., OSU-03012 promotes caspase-independent but PERK-, cathepsin B-, BID-, and AIF-dependent killing of transformed cells (2006) Mol Pharmacol, 70, pp. 589-603 | ||
504 | |a Zhang, C., Kang, K., Ning, P., Peng, Y., Lin, Z., Cui, H., Cao, Z., Zhang, Y., Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication (2015) Virology, 482, pp. 9-18 | ||
504 | |a Zhu, J., Huang, J.W., Tseng, P.H., Yang, Y.T., Fowble, J., Shiau, C.W., Shaw, Y.J., Chen, C.S., From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors (2004) Cancer Res, 64, pp. 4309-4318 | ||
520 | 3 | |a We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α—dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12—stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286–2302, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc. |l eng | |
593 | |a Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States | ||
593 | |a School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia | ||
593 | |a Molecular and Translational Science, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States | ||
593 | |a Arno Therapeutics, Flemington, NJ, United States | ||
593 | |a Department of Otolaryngology, University of Arizona Ear Institute, Tucson, AZ, United States | ||
593 | |a FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4, lab QB-17, Buenos Aires, Argentina | ||
593 | |a Institute of Biomedicine and CIBEREhd, University of León, León, Spain | ||
690 | 1 | 0 | |a 2 AMINO N [4 [5 (2 PHENANTHRENYL) 3 TRIFLUOROMETHYL 1H PYRAZOL 1 YL]PHENYL]ACETAMIDE |
690 | 1 | 0 | |a ADENOSINE TRIPHOSPHATASE |
690 | 1 | 0 | |a ANTIVIRUS AGENT |
690 | 1 | 0 | |a AR 12 |
690 | 1 | 0 | |a BECLIN 1 |
690 | 1 | 0 | |a CHAPERONE |
690 | 1 | 0 | |a GAMMA GLUTAMYLTRANSFERASE |
690 | 1 | 0 | |a GLUCOSE REGULATED PROTEIN 78 |
690 | 1 | 0 | |a GLUCOSIDASE |
690 | 1 | 0 | |a HEAT SHOCK PROTEIN 27 |
690 | 1 | 0 | |a HEAT SHOCK PROTEIN 70 |
690 | 1 | 0 | |a HEAT SHOCK PROTEIN 90 |
690 | 1 | 0 | |a INITIATION FACTOR 2ALPHA |
690 | 1 | 0 | |a LACTATE DEHYDROGENASE |
690 | 1 | 0 | |a LC3 PROTEIN |
690 | 1 | 0 | |a MAMMALIAN TARGET OF RAPAMYCIN |
690 | 1 | 0 | |a PAZOPANIB |
690 | 1 | 0 | |a SMALL INTERFERING RNA |
690 | 1 | 0 | |a SORAFENIB |
690 | 1 | 0 | |a UNCLASSIFIED DRUG |
690 | 1 | 0 | |a VIRUS PROTEIN |
690 | 1 | 0 | |a VIRUS RECEPTOR |
690 | 1 | 0 | |a ANIMAL EXPERIMENT |
690 | 1 | 0 | |a ARTICLE |
690 | 1 | 0 | |a AUTOPHAGOSOME |
690 | 1 | 0 | |a AUTOPHAGY |
690 | 1 | 0 | |a CELL KILLING |
690 | 1 | 0 | |a CELL VIABILITY |
690 | 1 | 0 | |a CONTROLLED STUDY |
690 | 1 | 0 | |a COXSACKIEVIRUS B4 |
690 | 1 | 0 | |a CYTOLYSIS |
690 | 1 | 0 | |a EBOLAVIRUS |
690 | 1 | 0 | |a ENDOPLASMIC RETICULUM STRESS |
690 | 1 | 0 | |a ENZYME RELEASE |
690 | 1 | 0 | |a EXPERIMENTAL RABBIT |
690 | 1 | 0 | |a GENE OVEREXPRESSION |
690 | 1 | 0 | |a GENE SILENCING |
690 | 1 | 0 | |a HUMAN |
690 | 1 | 0 | |a HUMAN CELL |
690 | 1 | 0 | |a HUMAN IMMUNODEFICIENCY VIRUS |
690 | 1 | 0 | |a IMMUNOFLUORESCENCE TEST |
690 | 1 | 0 | |a INFLUENZA VIRUS |
690 | 1 | 0 | |a JUNIN VIRUS |
690 | 1 | 0 | |a MACROPHAGE |
690 | 1 | 0 | |a MEASLES VIRUS |
690 | 1 | 0 | |a MOUSE |
690 | 1 | 0 | |a MUMPS VIRUS |
690 | 1 | 0 | |a NONHUMAN |
690 | 1 | 0 | |a PRIORITY JOURNAL |
690 | 1 | 0 | |a PROTEIN DEPHOSPHORYLATION |
690 | 1 | 0 | |a PROTEIN GLYCOSYLATION |
690 | 1 | 0 | |a PROTEIN LOCALIZATION |
690 | 1 | 0 | |a PROTEIN PHOSPHORYLATION |
690 | 1 | 0 | |a PROTEIN PROTEIN INTERACTION |
690 | 1 | 0 | |a RUBELLA VIRUS |
690 | 1 | 0 | |a VIRUS REPLICATION |
690 | 1 | 0 | |a WILD TYPE |
653 | 0 | 0 | |a ar 12; osu 03012, Selleck, United States |
700 | 1 | |a Roberts, J.L. | |
700 | 1 | |a Ecroyd, H. | |
700 | 1 | |a Tritsch, S.R. | |
700 | 1 | |a Bavari, S. | |
700 | 1 | |a Reid, S.P. | |
700 | 1 | |a Proniuk, S. | |
700 | 1 | |a Zukiwski, A. | |
700 | 1 | |a Jacob, A. | |
700 | 1 | |a Sepúlveda, C.S. | |
700 | 1 | |a Giovannoni, F. | |
700 | 1 | |a García, C.C. | |
700 | 1 | |a Damonte, E. | |
700 | 1 | |a González-Gallego, J. | |
700 | 1 | |a Tuñón, M.J. | |
700 | 1 | |a Dent, P. | |
773 | 0 | |d Wiley-Liss Inc., 2016 |g v. 231 |h pp. 2286-2302 |k n. 10 |p J. Cell. Physiol. |x 00219541 |w (AR-BaUEN)CENRE-2700 |t Journal of Cellular Physiology | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975074244&doi=10.1002%2fjcp.25431&partnerID=40&md5=4b6dc3111becc1e4c587aa4524bb8f17 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1002/jcp.25431 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00219541_v231_n10_p2286_Booth |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219541_v231_n10_p2286_Booth |y Registro en la Biblioteca Digital |
961 | |a paper_00219541_v231_n10_p2286_Booth |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 76655 |