Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent
Biodegradable and non-retrogradable starch-glycerol based films were obtained using citric acid (CA) as crosslinking agent at 75 °C. This material allowed decreasing water vapor permeability (WVP) more than 35%, remained amorphous for at least 45 days as a result of the network formed by the CA that...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Elsevier Ltd
2016
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 15310caa a22015497a 4500 | ||
---|---|---|---|
001 | PAPER-16136 | ||
003 | AR-BaUEN | ||
005 | 20250423093025.0 | ||
008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-84949678335 | |
024 | 7 | |2 cas |a citric acid, 126-44-3, 5949-29-1, 77-92-9, 8002-14-0; dimethyl sulfoxide, 67-68-5; glycerol, 56-81-5; starch, 9005-25-8, 9005-84-9; water, 7732-18-5; Citric Acid; Cross-Linking Reagents; Dimethyl Sulfoxide; Glycerol; Starch; Water | |
030 | |a CAPOD | ||
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Seligra, P.G. | |
245 | 1 | 0 | |a Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent |
260 | |b Elsevier Ltd |c 2016 | ||
270 | 1 | 0 | |m Famá, L.; LP and MC, Dep. de Física - IFIBA, CONICET, FCEyN, UBA, Ciudad UniversitariaArgentina |
504 | |a AOAC, (1995) Official Methods of Analysis, , Association of Official Analytical Chemists Washington, DC | ||
504 | |a Averous, L., Boquillon, N., Biocomposites based on plasticized starch: Thermal and mechanical behaviours (2004) Carbohydrate Polymers, 56 (2), pp. 111-122 | ||
504 | |a Bertuzzi, M.A., Armada, M., Gottifredi, J.C., Physicochemical characterization of starch based films (2007) Journal of Food Engineering, 82 (1), pp. 17-25 | ||
504 | |a Buléon, A., Véronèse, G., Putaux, J.-L., Self-association and crystallization of amylose (2007) Australian Journal of Chemistry, 60 (10), pp. 706-718 | ||
504 | |a Choi, S.G., Kerr, W.L., 1H NMR studies of molecular mobility in wheat starch (2003) Food Research International, 36 (4), pp. 341-348 | ||
504 | |a Famá, L., Bittante, A.M.B.Q., Sobral, P.J.A., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Material Science and Engineering C, 30, pp. 853-859 | ||
504 | |a Famá, L., Gañan Rojo, P., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993 | ||
504 | |a Farhat, I.A., Blanshard, J.M.V., Mitchell, J.R., The retrogradation of waxy maize starch extrudates: Effects of storage temperature and water content (2000) Biopolymers, 53 (5), pp. 411-422 | ||
504 | |a Flores, S., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physicochemical properties of tapioca-starch edible films, Influence of gelatinization and drying technique (2007) Food Research International, 40 (2), pp. 257-265 | ||
504 | |a Forssell, P.M., Hulleman, S., Myllärinen, P., Moates, G.K., Parker, R., Ageing of rubbery thermoplastic barley and oat starches (1999) Carbohydrate Polymers, 39 (1), pp. 43-51 | ||
504 | |a Fundo, J.F., Fernandes, R., Almeida, P.M., Carvalho, A., Feio, G., Silva, C.L.M., Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films (2014) Food Chemistry, 144, pp. 2-8 | ||
504 | |a Garcia, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982 | ||
504 | |a Gaudín, S., Lourdin, D., Le Botlan, D., Ilari, J.L., Colonna, P., Plasticisation and mobility in starch-sorbitol films (1999) Journal of Cereal Science, 29 (3), pp. 273-284 | ||
504 | |a Ghanbarzadeh, B., Almasi, H., Entezami, A.A., Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose (2011) Industrial Crops and Products, 33 (1), pp. 229-235 | ||
504 | |a Gennadios, A., Weller, C.L., Gooding, C.H., Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films (1994) Journal of Food Engineering, 21 (4), pp. 395-409 | ||
504 | |a Gutiérrez, T.J., Pérez, E., Guzmán, R., Tapia, M.S., Famá, L., Structural and mechanical properties of native and modified cush-cush yam and cassava starch edible films (2015) Food Hydrocolloids, 45, pp. 211-217 | ||
504 | |a Holser, R.A., Thermal analysis of glycerol citrate/starch blends (2008) Journal of Applied Polymer Science, 110 (3), pp. 1498-1501 | ||
504 | |a Hoover, R., Acid-treated starches (2000) Food Reviews International, 16 (3), pp. 369-392 | ||
504 | |a Imam, S.H., Cinelli, P., Gordon, S.H., Chiellini, E., Characterization of biodegradable composite films prepared from blends of poly(vinyl alcohol), cornstarch, and lignocellulosic fiber (2005) Journal of Polymers and the Environment, 13 (1), pp. 47-55 | ||
504 | |a Kumar, A.P., Singh, R.P., Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking (2008) Bioresource Technology, 99 (18), pp. 8803-8809 | ||
504 | |a Krumova, M., Lopez, D., Benavente, R., Mijangos, C., Pereña, J.M., Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol) (2000) Polymer, 41 (26), pp. 9265-9272 | ||
504 | |a Leung, H.K., Steinberg, M.P., Wei, L.S., Nelson, A.I., Water binding of macromolecules determined by pulsed NMR (1976) Journal of Food Science, 41 (2), pp. 297-300 | ||
504 | |a Liu, Z., Dong, Y., Men, H., Jiang, M., Tonga, J., Zhou, J., Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate (2012) Carbohydrate Polymers, 89 (2), pp. 473-477 | ||
504 | |a Ma, X., Chang, P.R., Yu, J., Stumborg, M., Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites (2009) Carbohydrate Polymers, 75 (1), pp. 1-8 | ||
504 | |a Maiti, S., Ray, D., Mitra, D., Role of crosslinker on the biodegradation behavior of starch/polyvinylalcohol blend films (2012) Journal of Polymers and the Environment, 20 (3), pp. 749-759 | ||
504 | |a Maiti, S., Ray, D., Mitra, D., Mukhopadhyay, A., Isolation and characterisation of starch/polyvinyl alcohol degrading fungi from aerobic compost environment (2013) International Biodeterioration & Biodegradation, 82, pp. 9-12 | ||
504 | |a Marques, P.T., Lima, A.M.F., Bianco, G., Laurindo, J.B., Borsali, R., Le Meins, J.-F., Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate (2006) Polymer Degradation and Stability, 91 (4), pp. 726-732 | ||
504 | |a Mathew, A.P., Dufresne, A., Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties (2002) Biomacromolecules, 3 (5), pp. 1101-1108 | ||
504 | |a Medina Jaramillo, C., González Seligra, P., Goyanes, S., Bernal, C., Famá, L., Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer (2015) Starch-Stärke, 67, pp. 780-789 | ||
504 | |a Mendes, L.C., Silva, D.F., Lino, A.S., Linear low-density polyethylene and zirconium phosphate nanocomposites: Evidencefrom thermal, thermo-mechanical, morphological and low-field nuclear magnetic resonance techniques (2012) Journal of Nanoscience and Nanotechnology, 12 (12), pp. 8867-8873 | ||
504 | |a Menzel, C., Olsson, E., Plivelic, T.S., Andersson, R., Johansson, C., Kuktaite, R., Molecular structure of citric acid cross-linked starch films (2013) Carbohydrate Polymers, 96 (1), pp. 270-276 | ||
504 | |a Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G., Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement (2015) Carbohydrate Polymers, 127, pp. 291-299 | ||
504 | |a Olsson, E., Hedenqvist, M.S., Johansson, C., Järnström, L., Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films (2013) Carbohydrate Polymers, 94 (2), pp. 765-772 | ||
504 | |a Olsson, E., Menzel, C., Johansson, C., Andersson, R., Koch, K., Järnström, L., The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid (2013) Carbohydrate Polymers, 98 (2), pp. 1505-1513 | ||
504 | |a Paes, S.S., Yakimets, I., Mitchell, J.R., Influence of gelatinization process on functional properties of cassava starch films (2008) Food Hydrocolloids, 22 (5), pp. 788-797 | ||
504 | |a Prakash Marana, J., Sivakumara, V., Thirugnanasambandhama, K., Sridharba, R., Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions (2014) Carbohydrate Polymers, 101, pp. 20-28 | ||
504 | |a Preto, M., Tavares, M.I.B., Da Silva, E.P., Low-field NMR study of Nylon 6/silica composites (2007) Polymer Testing, 26 (4), pp. 501-504 | ||
504 | |a Reddy, N., Yang, Y., Citric acid cross-linking of starch films (2010) Food Chemistry, 118 (3), pp. 702-711 | ||
504 | |a Rindlav-Westling, A., Stading, M., Hermansson, A.M., Gatenholm, P., Structure, mechanical and barrier properties of amylose and amylopectin films (1998) Carbohydrate Polymers, 36 (2-3), pp. 217-224 | ||
504 | |a Romero-Bastida, C.A., Bello-Perez, L.A., Garcia, M.A., Martino, M.N., Solorza-Feria, J., Zarintzky, N.E., Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches (2005) Carbohydrate Polymers, 60 (2), pp. 235-244 | ||
504 | |a Salomão Garcia, P., Eiras Grossmann, M.V., Ayumi Shirai, M., Lazaretti, M.M., Yamashita, F., Muller, C.M., Improving action of citric acid as compatibiliser in starch/polyester blown films (2014) Industrial Crops and Products, 52, pp. 305-312 | ||
504 | |a Shi, R., Bi, J., Zhang, Z., Zhu, A., Chen, D., Zhou, X., The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature (2008) Carbohydrate Polymers, 74 (4), pp. 763-770 | ||
504 | |a Shi, R., Zhang, Z., Liu, Q., Han, Y., Zhang, L., Chen, D., Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending (2007) Carbohydrates Polymers, 69 (4), pp. 748-755 | ||
504 | |a Tang, X., Alavi, S., Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability (2011) Carbohydrate Polymers, 85, pp. 7-16 | ||
504 | |a Yu, J., Wang, N., Ma, X., The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol (2005) Starch/Stärke, 57 (10), pp. 494-504 | ||
504 | |a Zhou, J., Zhang, J., Ma, Y., Tong, J., Surface photo-crosslinking of corn starch sheets (2008) Carbohydrate Polymers, 74 (3), pp. 405-410 | ||
504 | |a Zuraida, A., Yusliza, Y., Anuar, H., Mohd Khairul Muhaimin, R., The effect of water and citric acid on sago starch bio-plastics (2012) International Food Research Journal, 19 (2), pp. 715-719 | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a Biodegradable and non-retrogradable starch-glycerol based films were obtained using citric acid (CA) as crosslinking agent at 75 °C. This material allowed decreasing water vapor permeability (WVP) more than 35%, remained amorphous for at least 45 days as a result of the network formed by the CA that avoided starch retrogradation and maintained the degradability in compost, occurring only six days after the films without citric acid. A simulation of the gelatinization process of starch-glycerol with and without CA, using a differential thermal analysis device, showed that the system with CA completed the gelatinization 5 °C before than the other and, CA first reacted with glycerol and then starch-glycerol-CA reaction occurred. The temperature at which the gelatinization process was carried out was critical to obtain the best results. An increase of gelatinization process temperature at 85 °C in system with CA, led to a worsening on WVP and its integrity after a swelling process with dimethylsulphoxide (DMSO), compared to the films processed at 75 °C. © 2015 Elsevier Ltd. |l eng | |
536 | |a Detalles de la financiación: Universidad de Buenos Aires, CAPES 2014-2015 BR/13/13, UBACYT, 2014-2017 No., 20020130100495BA | ||
536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, —2012-1093 | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 2014-2016 No. 11220120100508CO | ||
536 | |a Detalles de la financiación: The authors wish to acknowledge the support and collaboration of the following organizations: ANPCyT—2012-1093, CONICET PIP 2014-2016 No. 11220120100508CO, Universidad de Buenos Aires UBACYT 2014-2017 No. 20020130100495BA, CAPES 2014-2015 BR/13/13. | ||
593 | |a LP and MC, Dep. de Física - IFIBA, CONICET, FCEyN, UBA, Ciudad Universitaria, CABA, 1428, Argentina | ||
593 | |a Instituto de Tecnología en Polímeros y Nanotecnología ITPN (UBA-CONICET), FCEyN, UBA, Av. Las Heras 2214, CABA, C1127AAQ, Argentina | ||
690 | 1 | 0 | |a BIODEGRADABILITY |
690 | 1 | 0 | |a BIODEGRADABLE EDIBLE FILMS |
690 | 1 | 0 | |a CITRIC ACID |
690 | 1 | 0 | |a CROSSLINKING |
690 | 1 | 0 | |a STARCH |
690 | 1 | 0 | |a AMORPHOUS FILMS |
690 | 1 | 0 | |a BIODEGRADABILITY |
690 | 1 | 0 | |a BIODEGRADATION |
690 | 1 | 0 | |a CITRIC ACID |
690 | 1 | 0 | |a COMPOSTING |
690 | 1 | 0 | |a DIFFERENTIAL THERMAL ANALYSIS |
690 | 1 | 0 | |a GELATION |
690 | 1 | 0 | |a GLYCEROL |
690 | 1 | 0 | |a STARCH |
690 | 1 | 0 | |a THERMOANALYSIS |
690 | 1 | 0 | |a CROSS LINKING AGENTS |
690 | 1 | 0 | |a DEGRADABILITY |
690 | 1 | 0 | |a EDIBLE FILMS |
690 | 1 | 0 | |a PROCESS TEMPERATURE |
690 | 1 | 0 | |a STARCH RETROGRADATION |
690 | 1 | 0 | |a SWELLING PROCESS |
690 | 1 | 0 | |a WATER VAPOR PERMEABILITY |
690 | 1 | 0 | |a CROSSLINKING |
690 | 1 | 0 | |a CITRIC ACID |
690 | 1 | 0 | |a CROSS LINKING REAGENT |
690 | 1 | 0 | |a DIMETHYL SULFOXIDE |
690 | 1 | 0 | |a GLYCEROL |
690 | 1 | 0 | |a STARCH |
690 | 1 | 0 | |a WATER |
690 | 1 | 0 | |a BIOREMEDIATION |
690 | 1 | 0 | |a CHEMISTRY |
690 | 1 | 0 | |a INFRARED SPECTROSCOPY |
690 | 1 | 0 | |a MICROBIOLOGY |
690 | 1 | 0 | |a PERMEABILITY |
690 | 1 | 0 | |a TEMPERATURE |
690 | 1 | 0 | |a THERMOGRAVIMETRY |
690 | 1 | 0 | |a BIODEGRADATION, ENVIRONMENTAL |
690 | 1 | 0 | |a CITRIC ACID |
690 | 1 | 0 | |a CROSS-LINKING REAGENTS |
690 | 1 | 0 | |a DIMETHYL SULFOXIDE |
690 | 1 | 0 | |a GLYCEROL |
690 | 1 | 0 | |a PERMEABILITY |
690 | 1 | 0 | |a SOIL MICROBIOLOGY |
690 | 1 | 0 | |a SPECTROSCOPY, FOURIER TRANSFORM INFRARED |
690 | 1 | 0 | |a STARCH |
690 | 1 | 0 | |a TEMPERATURE |
690 | 1 | 0 | |a THERMOGRAVIMETRY |
690 | 1 | 0 | |a WATER |
700 | 1 | |a Medina Jaramillo, C. | |
700 | 1 | |a Famá, L. | |
700 | 1 | |a Goyanes, Silvia Nair | |
773 | 0 | |d Elsevier Ltd, 2016 |g v. 138 |h pp. 66-74 |p Carbohydr Polym |x 01448617 |w (AR-BaUEN)CENRE-603 |t Carbohydrate Polymers | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949678335&doi=10.1016%2fj.carbpol.2015.11.041&partnerID=40&md5=ba7b2a6be5bfb4c0a71acde0a3fb8476 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1016/j.carbpol.2015.11.041 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_01448617_v138_n_p66_Seligra |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v138_n_p66_Seligra |y Registro en la Biblioteca Digital |
961 | |a paper_01448617_v138_n_p66_Seligra |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
963 | |a VARI | ||
999 | |c 77089 |