Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase

Introduction: Farnesyl pyrophosphate synthase (FPPS) catalyzes the condensation of isopentenyl diphosphate with dimethylallyl diphosphate to give rise to one molecule of geranyl diphosphate, which on a further reaction with another molecule of isopentenyl diphosphate forms the 15-carbon isoprenoid f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodriguez, J.B
Otros Autores: Falcone, B.N, Szajnman, S.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Ltd 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 29939caa a22024977a 4500
001 PAPER-16142
003 AR-BaUEN
005 20230607131906.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84958535830 
024 7 |2 cas  |a hydroxyapatite, 1306-06-5, 51198-94-8; farnesyl diphosphate, 13058-04-3, 372-97-4; geranyltransferase, 37277-79-5, 50812-36-7; Antiparasitic Agents; Diphosphonates; Enzyme Inhibitors; farnesyl pyrophosphate; Geranyltranstransferase; Polyisoprenyl Phosphates; Sesquiterpenes 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Rodriguez, J.B. 
245 1 0 |a Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase 
260 |b Taylor and Francis Ltd  |c 2016 
270 1 0 |m Rodriguez, J.B.; Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Argentina; email: jbr@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ogura, K., Koyama, T., Enzymatic aspects of isoprenoid chain elongation (1998) Chem Rev., 98, pp. 1263-1276 
504 |a Kellogg, B.A., Poulter, C.D., Chain elongation in the isoprenoid biosynthetic pathway (1997) Curr Opin Chem Biol., 1, pp. 570-578 
504 |a Eberl, M., Hintz, M., Reichenberg, A., Microbial isoprenoid biosynthesis and human ? T cell activation (2003) FEBS Lett., 544, pp. 4-10 
504 |a Zhao, L., Chang, W.-C., Xiao, Y., Methylerythritol phosphate pathway of isoprenoid biosynthesis (2013) Annu Rev Biochem., 82, pp. 497-530 
504 |a Reszka, A.A., Rodan, G.A., Nitrogen-containing bisphosphonate mechanism of action (2004) Mini Rev Med Chem., 4, pp. 711-719 
504 |a Miller, K., Erez, R., Segal, E., Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate (2009) Angew Chem Int Ed., 48, pp. 2949-2954 
504 |a Clézardin, P., Massaia, M., Nitrogen-containing bisphosphonates and cancer immunotherapy (2010) Curr Pharm Des., 16, pp. 3007-3014 
504 |a Coleman, R.E., Risks and benefits of bisphosphonates (2008) British J Cancer., 98, pp. 1736-1740 
504 |a Zhang, Y., Cao, R., Yin, F., Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: An X-ray and NMR investigation (2009) J Am Chem Soc., 131, pp. 5153-5162 
504 |a Reddy, R., Dietrich, E., Lafontaine, Y., Bisphosphonated benzoxazinorifamycin prodrugs for the prevention and treatment of osteomyelitis (2008) Chem Med Chem., 3, pp. 1863-1868 
504 |a Sanders, J.M., Ghosh, S., Chan, J.M.W., Quantitative structure-activity relationships for ? T cell activation by bisphosphonates (2004) J Med Chem., 47, pp. 375-384 
504 |a Rodriguez, J.B., Szajnman, S.H., New antibacterials for the treatment of toxoplasmosis; A patent review (2012) Expert Opinion Ther Patents., 22, pp. 311-333 
504 |a Urbina, J.A., Moreno, B., Vierkotter, S., Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs (1999) J Biol Chem., 274, pp. 33609-33615 
504 |a Ghosh, S., Chan, J.M.W., Lea, C.R., Effects of bisphosphonates on the growth of Entamoeba histolytica and plasmodium species in vitro and in vivo (2004) J Med Chem., 47, pp. 175-187 
504 |a Martin, M.B., Grimley, J.S., Lewis, J.C., Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A potential route to chemotherapy (2001) J Med Chem., 44, pp. 909-916 
504 |a Martin, M.B., Sanders, J.M., Kendrick, H., Activity of bisphosphonates against Trypanosoma brucei rhodesiense (2002) J Med Chem., 45, pp. 2904-2914 
504 |a Yardley, V., Khan, A.A., Martin, M.B., In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii (2002) Antimicrob Agents Chemother., 46, pp. 929-931 
504 |a Blanchard, L., Karst, F., Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae (1993) Gene., 125, pp. 185-189 
504 |a Song, L., Poulter, C.D., Yeast farnesyl-diphosphate synthase: Site-directed mutagenesis of residues in highly conserved prenyltransferase domains i and II (1994) Proc Natl Acad Sci USA., 91, pp. 3044-3048 
504 |a Sun, S., McKenna, C.E., Farnesyl pyrophosphate synthase modulators: A patent review(2006-2010) (2011) Expert Opinion Ther Patents., 21, pp. 1433-1451 
504 |a Clarke, S., Protein isoprenylation and methylation at carboxyl-terminal cysteine residues (1992) Annu Rev Biochem., 61, pp. 355-386 
504 |a Luckman, S.P., Hughes, D.E., Coxon, F.P., Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras (1998) J Bone Miner Res., 13, pp. 581-589 
504 |a Zhang, F.L., Casey, P.J., Protein prenylation: Molecular mechanisms and functional consequences (1996) Annu Rev Biochem., 65, pp. 241-269 
504 |a Kitten, G.T., Nigg, E.A., The CAAX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2 (1991) J Cell Biol., 113, pp. 13-23 
504 |a Hancock, J.F., Magee, A.I., Childs, J.E., All Ras proteins are polyisoprenylated but only some are palmitoylated (1989) Cell., 57, pp. 1167-1177 
504 |a Eastman, R.T., White, J., Hucke, O., Resistance to a protein farnesyltransferase inhibitor in Plasmodium falciparum (2005) J Biol Chem., 280, pp. 13554-13559 
504 |a Yokoyama, K., Trobridge, P., Buckner, F.S., The effects of protein farnesyltransferase inhibitors on trypanosomatids: Inhibition of protein farnesylation and cell growth (1998) Mol Biochem Parasitol., 94, pp. 87-97 
504 |a Yokoyama, K., Trobridge, P., Buckner, F.S., Protein Farnesyltransferase from Trypanosoma brucei: A HETERODIMER of 61-AND 65-kDa SUBUNITS AS A NEW TARGET for ANTIPARASITE THERAPEUTICS (1998) J Biol Chem., 273, pp. 26497-26505 
504 |a Cuevas, I.C., Rohloff, P., Sanchez, D.O., Characterization of farnesylated protein tyrosine phosphatase TcPRL-1 from Trypanosoma cruzi (2005) Eukaryot Cell., 4, pp. 1550-1561 
504 |a Lynen, F., Agranoff, B.W., Eggerer, H., ?,?-Dimethyl-allyl-pyrophosphat und Geranyl-pyrophosphat, biologische Vorstufen des Squalens Zur Biosynthese der Terpene, VI1) (1959) Angew Chem., 71, pp. 657-663 
504 |a Roelofs, A.J., Thompson, K., Ebetino, F.H., Bisphosphonates: Molecular mechanisms of action and effects on bone cells, monocytes and macrophages (2010) Curr Pharm Des., 16, pp. 2950-2960 
504 |a Fleisch, H., Russell, R.G.G., Straumann, F., Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis (1966) Nature., 212, pp. 901-903 
504 |a Francis, M.D., Graham, R.G.G., Russell, G., Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo (1969) Science., 165, pp. 1264-1266 
504 |a Fleisch, H., Graham, R.G.G., Russell, G., Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo (1969) Science., 165, pp. 1262-1264 
504 |a Russell, R.G.G., Bisphosphonates: The first 40 years (2011) Bone., 49, pp. 2-19 
504 |a Reszka, A.A., Rodan, G.A., Mechanism of action of bisphosphonates (2003) Curr Osteoporos Rep., 1, pp. 45-52 
504 |a Russell, R.G.G., Rogers, J.M., Bisphosphonates: From the laboratory to the clinic and back again (1999) Bone., 25, pp. 97-106 
504 |a Drake, M.T., Clarke, B.L., Khosla, S., Bisphosphonates: Mechanism of action and role in clinical practice (2008) Mayo Clin Proc., 83, pp. 1032-1045 
504 |a Plotkin, L.I., Weinstein, R.S., Parfitt, A.M., Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin (1999) J Clin Invest., 104, pp. 1363-1374 
504 |a Plotkin, L.I., Aguirre, J.I., Kousteni, S., Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation (2005) J Biol Chem., 280, pp. 7317-7325 
504 |a Gumienna-Kontecka, E., Silvagni, R., Lipinski, R., Bisphosphonate chelating agents: Complexation of Fe(III) and Al(III) by 1-phenyl-1-hydroxymethylene bisphosphonate and its analogues (2002) Inorg Chimica Acta., 339, pp. 111-118 
504 |a Crisponi, G., Nurchi, V.M., Pivetta, T., Towards a new attenuating compound: A potentiometric, spectrophotometric and NMR equilibrium study on Fe(III), Al(III) and a new tetradentate mixed bisphosphonate-hydroxypyridinonate ligand (2008) J Inorg Biochem., 102, pp. 1486-1494 
504 |a Gumienna-Kontecka, E., Jezierska, J., Lecouvey, M., Bisphosphonate chelating agents. Coordination ability of 1-phenyl-1-hydroxymethylene bisphosphonate towards Cu2+ ions (2002) J Inorg Biochem., 89, pp. 13-17 
504 |a Dolbecq, A., Mialane, P., Sécheresse, F., Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands: From electrocatalytic to optical properties (2012) Chem Commun., 48, pp. 8299-8316 
504 |a Ebetino, F.H., Francis, M.D., Rogers, M.J., Mechanisms of action of etidronate and other bisphosphonates (1998) Rev Contemp Pharmacother., 9, pp. 233-243 
504 |a Matczak-Jon, E., Kurzak, B., Kamecka, A., Interactions of zinc(II), magnesium(II) and calcium(II) with aminomethane-1,1-diphosphonic acids in aqueous solutions (2002) Polyhedron., 21, pp. 321-332 
504 |a Van Beek, E., Löwik, C., Que, I., Dissociation of binding and antiresorptive properties of hydroxybisphosphonates by substitution of the hydroxyl with an amino group (1996) J Bone Miner Res., 11, pp. 1492-1497 
504 |a Marma, M.S., Xia, Z., Stewart, C., Synthesis and biological evaluation of ?-halogenated bisphosphonate and phosphonocarboxylate analogues of risedronate (2007) J Med Chem., 50, pp. 5967-5975 
504 |a McKenna, C.E., Shen, P.-D., Fluorination of methanediphosphonate esters by perchloryl fluoride. Synthesis of fluoromethanediphosphonic acid and difluoromethanediphosphonic acid (1981) J Org Chem., 46, pp. 4573-4576 
504 |a Romanenko, V.D., Kukhar, V.P., Fluorinated phosphonates: Synthesis and biomedical application (2006) Chem Rev., 106, pp. 3868-3935 
504 |a Berkowitz, D.B., Bose, M., (?-Monofluoroalkyl)phosphonates: A class of isoacidic and "tunable" mimics of biological phosphates (2001) J Fluorine Chem., 112, pp. 13-33 
504 |a Blackburn, G.M., England, D.A., Kolkmann, F., Monofluoro-and difluoromethylenebisphosphonic acids: Isopolar analogues of pyrophosphoric acid (1981) Chem Commun., 1981, pp. 930-932 
504 |a Dhar, M.K., Koul, A., Kaul, S., Farnesyl pyrophosphate synthase: A key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development (2013) New Biotechnology., 30, pp. 115-123 
504 |a Ebetino, F.H., Hogan, A.-M.L., Sun, S., The relationship between the chemistry and biological activity of the bisphosphonates (2011) Bone., 49, pp. 20-33 
504 |a Ohno, K., Mori, K., Orita, M., Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase (2011) Curr Med Chem., 18, pp. 220-233 
504 |a Cornforth, J.W., Cornforth, R.H., Popják, G., Studies on the biosynthesis of cholesterol. XX. Steric course of decarboxylation of 5-pyrophosphomevalonate and of the carbon to carbon bond formation in the biosynthesis of farnesyl pyrophosphate (1966) J Biol Chem., 241, pp. 3970-3987 
504 |a Kloer, D.P., Welsch, R., Beyer, P., Structure and reaction geometry of geranylgeranyl diphosphate synthase from Sinapis alba (2006) Biochemistry., 45, pp. 15197-15204 
504 |a Gabelli, S.B., McLellan, J.S., Montalvetti, A., Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: Implications for drug design (2006) Proteins., 62, pp. 80-88 
504 |a Martin, M.B., Arnold, W., Heath, H.T., Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis (1999) Biochem Biophys Res Commun., 263, pp. 754-758 
504 |a Kavanagh, K.L., Guo, K., Dunford, J.E., The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs (2006) Proc Natl Acad Sci USA., 103, pp. 7829-7834 
504 |a Rondeau, J.-M., Bitsch, F., Bourgier, E., Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs (2006) ChemMedChem., 1, pp. 267-273 
504 |a De Schutter, J.W., Park, J., Leung, C.Y., Multistage screening reveals chameleon ligands of the human farnesyl pyrophosphate synthase: Implications to drug discovery for neurodegenerative diseases (2014) J Med Chem., 57, pp. 5764-5776 
504 |a Park, J., Lin, Y.-S., De Schutter, J.W., Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme's active site closure (2012) BMC Struct Biol., 12, p. 32 
504 |a Park, J., Lin, Y.-S., Tsantrizos, Y.S., Structure of human farnesyl pyrophosphate synthase in complex with an aminopyridine bisphosphonate and two molecules of inorganic phosphate (2014) Acta Crystallogr Sect F Struct Biol Commun., 70, pp. 299-304 
504 |a Leung, C.Y., Park, J., De Schutter, J.W., Thienopyrimidine bisphosphonate(ThPBP) inhibitors of the human farnesyl pyrophosphate synthase: Optimization and characterization of the mode of inhibition (2013) J Med Chem., 56, pp. 7939-7950 
504 |a Lin, Y.-S., Park, J., De Schutter, J.W., Design and synthesis of active site inhibitors of the human farnesyl pyrophosphate synthase: Apoptosis and inhibition of ERK phosphorylation in multiple myeloma cells (2012) J Med Chem., 55, pp. 3201-3215 
504 |a Tarshis, L.C., Yan, M., Poulter, C.D., Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution (1994) Biochemistry., 33, pp. 10871-10877 
504 |a Tarshis, L.C., Proteau, P.J., Kellogg, B.A., Regulation of product chain length by isoprenyl diphosphate synthases (1996) Proc Natl Acad Sci USA., 93, pp. 15018-15023 
504 |a Guo, R.-T., Cao, R., Liang, P.-H., Bisphosphonates target multiple sites in both cis-and trans-prenyltransferases (2007) Proc Natl Acad Sci USA., 104, pp. 10022-10027 
504 |a Huang, C.-H., Gabelli, S.B., Oldfield, E., Binding of nitrogen-containing bisphosphonates(N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer (2010) Proteins., 78, pp. 888-899 
504 |a Aripirala, S., Szajnman, S.H., Jakoncic, J., Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase (2012) J Med Chem., 55, pp. 6445-6454 
504 |a Cao, R., Chen, C.K.M., Guo, R.-T., Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases (2008) Proteins., 73, pp. 431-439 
504 |a Mao, J., Gao, Y.-G., Odeh, S., Crystallization and preliminary X-ray diffraction study of the farnesyl diphosphate synthase from Trypanosoma brucei (2004) Acta Crystallogr D Biol Crystallogr., 60, pp. 1863-1866 
504 |a Aripirala, S., Gonzalez-Pacanowska, D., Oldfield, E., Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates (2014) Acta Crystallogr Sect D Biol Crystallogr., 70, pp. 802-810 
504 |a Artz, J.D., Wernimont, A.K., Dunford, J.E., Molecular characterization of a novel geranylgeranyl pyrophosphate synthase from plasmodium parasites (2011) J Biol Chem., 286, pp. 3315-3322 
504 |a Wang, W., Dong, C., McNeil, M., The structural basis of chain length control in Rv1086 (2008) J Mol Biol., 381, pp. 129-140 
504 |a Hosfield, D.J., Zhang, Y., Dougan, D.R., Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis (2003) J Biol Chem., 278, pp. 18401-18407 
504 |a Roberts, E., Eargle, J., Wright, D., MultiSeq: Unifying sequence and structure data for evolutionary analysis (2006) BMC Bioinformatics., 7, p. 382 
504 |a Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J Molec Graphics., 14, pp. 33-38 
504 |a King, H.L., Jr., Rilling, H.C., Avian liver prenyltransferase. The role of metal in substrate binding and the orientation of substrates during catalysis (1977) Biochemistry., 16, pp. 3815-3819 
504 |a Liu, Y.-L., Cao, R., Wang, Y., Farnesyl diphosphate synthase inhibitors with unique ligand-binding geometries (2015) ACS Med Chem Lett., 6, pp. 349-354 
504 |a Ling, Y., Li, Z.-H., Miranda, K., The farnesyldiphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates (2007) J Biol Chem., 282, pp. 30804-30816 
504 |a Biasini, M., Bienert, S., Waterhouse, A., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res., 42, pp. W252-W258 
504 |a Arnold, K., Bordoli, L., Kopp, J., The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling (2006) Bioinformatics., 22, pp. 195-201 
504 |a Kiefer, F., Arnold, K., Künzli, M., The SWISS-MODEL Repository and associated resources (2009) Nucleic Acids Res., 37, pp. D387-D392 
504 |a Chan, H.-C., Feng, X., Ko, T.-P., Structure and inhibition of tuberculosinol synthase and decaprenyl diphosphate synthase from Mycobacterium tuberculosis (2014) J Am Chem Soc., 136, pp. 2892-2896 
504 |a Rosso, V.S., Szajnman, S.H., Malayil, L., Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2011) Bioorg Med Chem., 19, pp. 2211-2217 
504 |a Szajnman, S.H., Garcá Liñares, G.E., Li, Z.-H., Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2008) Bioorg Med Chem., 16, pp. 3283-3290 
504 |a Ohnuma, S., Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis (1996) J Biol Chem., 271, pp. 10087-10095 
504 |a Yokoyama, T., Mizuguchi, M., Ostermann, A., Protonation state and hydration of bisphosphonate bound to farnesyl pyrophosphate synthase (2015) J Med Chem., 58, pp. 7549-7556 
504 |a Ferrer-Casal, M., Li, C., Galizzi, M., New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase (2014) Bioorg Med Chem., 22, pp. 398-405 
504 |a Demoro, B., Caruso, F., Rossi, M., Risedronate metal complexes potentially active against Chagas disease (2010) J Inorg Biochem., 104, pp. 1252-1258 
504 |a Szajnman, S.H., Montalvetti, A., Wang, Y., Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2003) Bioorg Med Chem Lett., 13, pp. 3231-3235 
504 |a Szajnman, S.H., Rosso, V.S., Malayil, L., Design, synthesis and biological evaluation of 1-(fluoroalkylidene)-1,1-bisphosphonic acids against Toxoplasma gondii targeting farnesyl diphosphate synthase (2012) Org Biomol Chem., 10, pp. 1424-1433 
504 |a Recher, M., Barboza, A.P., Li, Z.-H., Design, synthesis and biological evaluation of sulfur-containing 1,1-bisphosphonic acids as antiparasitic agents (2013) Eur J Med Chem., 60, pp. 431-440 
504 |a Silverman, R.B., (1999) The Organic Chemistry of Drug Design and Drug Action, pp. 171-172. , San Diego: Academic Press 
504 |a Rich, D.H., Pepstatin-derived inhibitors of aspartic proteinases. A close look at an apparent transition-state analog inhibitor (1985) J Med Chem., 28, pp. 263-273 
504 |a Bergstrom, J.D., Bostedor, R.G., Masarachia, P.J., Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase (2000) Arch Biochem Biophys., 373, pp. 231-241 
504 |a Dunford, J.E., Kwaasi, A.A., Rogers, M.J., Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use and other analogues: Time-dependent inhibition of human farnesyl pyrophosphate synthase (2008) J Med Chem., 51, pp. 2187-2195 
504 |a Ebetino, F.H., Dunford, J.E., Lundy, M.W., A mirror image pair of bisphosphonate analogs further demonstrates the mode of binding of the bisphosphonates in farnexyl pyrophosphate synthase (2008) Bone., 42, pp. S36-S37 
504 |a Tsoumpra, M.K., Muniz, J.R., Barnett, B.L., The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants (2015) Bone., 81, pp. 478-486 
504 |a Cotesta, S., Jahnke, W., Rondeau, J.M., (2010) Phenylalkyl-imidazolebisphosphonate Compounds 
504 |a Gao, J., Liu, J., Qiu, Y., Multi-target-directed design, syntheses, and characterization of fluorescent bisphosphonate derivatives as multifunctional enzyme inhibitors in mevalonate pathway (2013) Biochim Biophys Acta., 1830, pp. 3635-3642 
504 |a Gao, J., Chu, X., Qiu, Y., Discovery of potent inhibitor for farnesyl pyrophosphate synthase in the mevalonate pathway (2010) Chem Commun., 46, pp. 5340-5342 
504 |a Kieczykowski, G.R., Jobson, R.B., Melillo, D.G., Preparation of(4-amino-1-hydroxybutylidene) bisphosphonic acid sodium salt, MK-217(alendronate sodium). An improved procedure for the preparation of 1-hydroxy-1,1-bisphosphonic acids (1995) J Org Chem., 60, pp. 8310-8312 
504 |a Bhattacharya, A.K., Thyagarajan, G., The Michaelis-Arbuzov rearrangement (1981) Chem Rev., 81, pp. 415-430 
504 |a Pudovik, A.N., Konovalova, I.V., Addition reactions of esters of phosphorus( III) acids with unsaturated systems (1979) Synthesis., 1979, pp. 81-96 
504 |a Lazzarato, L., Rolando, B., Lolli, M.L., Synthesis of NO-donor bisphosphonates and their in-vitro action on bone resorption (2005) J Med Chem., 48, pp. 1322-1329 
504 |a Vachal, P., Hale, J.J., Lu, Z., Synthesis and study of alendronate derivatives as potential prodrugs of alendronate sodium for the treatment of low bone density and osteoporosis (2006) J Med Chem., 49, pp. 3060-3063 
504 |a Kolodyazhnaya, A.O., Kolodyazhnaya, O.O., Kolodyazhnyi, O.I., An efficient method for the phosphonation of C=X compounds (2010) Russian J General Chem., 80, pp. 709-722 
504 |a Rodriguez, J.B., Tetraethyl Vinylidenebisphosphonate: A versatile synthon for the preparation of bisphosphonates (2014) Synthesis., 46, pp. 1129-1142 
504 |a Degenhardt, C.R., Burdsall, D.C., Synthesis of ethenylidenebis(phosphonic acid) and its tetraalkyl esters (1986) J Org Chem., 51, pp. 3488-3490 
504 |a Lolli, M.L., Lazzarato, L., Di Stilo, A., Michael addition of Grignard reagents to tetraethyl ethenylidenebisphosphonate (2002) J Organomet Chem., 650, pp. 77-83 
504 |a Wasielewski, C., Antczak, K., Aminophosphonic acids; XVI1. A new and facile synthesis of phosphinothricine and 2-amino-4-phosphonobutanoic acid (1981) Synthesis., 1981, pp. 540-541 
504 |a Kurzak, B., Goldeman, W., Szpak, M., Synthesis of N-methyl alkylaminomethane-1,1-diphosphonic acids and evaluation of their complex-formation abilities towards copper(II) (2015) Polyhedron., 85, pp. 675-684 
504 |a Liu, J., Liu, W., Ge, H., Syntheses and characterization of nonbisphosphonate quinoline derivatives as new FPPS inhibitors (2014) Biochim Biophys Acta., 1840, pp. 1051-1062 
504 |a Lindert, S., Zhu, W., Liu, Y.-L., Farnesyl diphosphate synthase inhibitors from in silico screening (2013) Chem Biol Drug Des., 81, pp. 742-748 
504 |a Jahnke, W., Rondeau, J.-M., Cotesta, S., Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery (2010) Nat Chem Biol., 6, pp. 660-666 
504 |a Marzinzik, A.L., Amstutz, R., Bold, G., Discovery of novel allosteric non-bisphosphonate inhibitors of farnesyl pyrophosphate synthase by integrated lead finding (2015) ChemMedChem., 10, pp. 1884-1891 
504 |a Jahnke, W., Bold, G., Marzinzik, A.L., A general strategy for targeting drugs to bone (2015) Angew Chem Int Ed., 54, pp. 14575-14579 
520 3 |a Introduction: Farnesyl pyrophosphate synthase (FPPS) catalyzes the condensation of isopentenyl diphosphate with dimethylallyl diphosphate to give rise to one molecule of geranyl diphosphate, which on a further reaction with another molecule of isopentenyl diphosphate forms the 15-carbon isoprenoid farnesyl diphosphate. This molecule is the obliged precursor for the biosynthesis of sterols, ubiquinones, dolichols, heme A, and prenylated proteins. The blockade of FPPS prevents the synthesis of farnesyl diphosphate and the downstream essential products. Due to its crucial role in isoprenoid biosynthesis, this enzyme has been winnowed as a molecular target for the treatment of different bone disorders and to control parasitic diseases, particularly, those produced by trypanosomatids and Apicomplexan parasites.Areas covered: This article discusses some relevant structural features of farnesyl pyrophosphate synthase. It also discusses the precise mode of action of relevant modulators, including both bisphosphonate and non-bisphosphonate inhibitors and the recent advances made in the development of effective inhibitors of the enzymatic activity of this target enzyme.Expert opinion: Notwithstanding their lack of drug-like character, bisphosphonates are still the most advantageous class of inhibitors of the enzymatic activity of farnesyl pyrophosphate synthase. The poor drug-like character is largely compensated by the high affinity of the bisphosphonate moiety by bone mineral hydroxyapatite in humans. Several bisphosphonates are currently in use for the treatment of a variety of bone disorders. Currently, the great prospects that bisphosphonates behave as antiparasitic agents is due to their accumulation in acidocalcisomes, organelles with equivalent composition to bone mineral, hence facilitating their antiparasitic action. © 2016 Taylor & Francis.  |l eng 
593 |a Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a BISPHOSPHONATES 
690 1 0 |a BONE DISORDERS 
690 1 0 |a FARNESYL PYROPHOSPHATE SYNTHASE 
690 1 0 |a PARASITIC DISEASES 
690 1 0 |a TOXOPLASMA GONDII 
690 1 0 |a TRYPANOSOMA CRUZI 
690 1 0 |a ANTIPARASITIC AGENT 
690 1 0 |a BENZOINDOLE DERIVATIVE 
690 1 0 |a BISPHOSPHONIC ACID DERIVATIVE 
690 1 0 |a ENZYME 
690 1 0 |a ENZYME INHIBITOR 
690 1 0 |a FARNESYL PYROPHOSPHATE SYNTHASE 
690 1 0 |a FARNESYL PYROPHOSPHATE SYNTHASE INHIBITOR 
690 1 0 |a HYDROXYAPATITE 
690 1 0 |a QUINOLINE DERIVATIVE 
690 1 0 |a SALICYLIC ACID DERIVATIVE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ANTIPARASITIC AGENT 
690 1 0 |a BISPHOSPHONIC ACID DERIVATIVE 
690 1 0 |a ENZYME INHIBITOR 
690 1 0 |a FARNESYL DIPHOSPHATE 
690 1 0 |a GERANYLTRANSFERASE 
690 1 0 |a ISOPRENOID PHOSPHATE 
690 1 0 |a SESQUITERPENE 
690 1 0 |a BINDING AFFINITY 
690 1 0 |a BINDING SITE 
690 1 0 |a BONE DISEASE 
690 1 0 |a BONE MINERAL 
690 1 0 |a CELL ORGANELLE 
690 1 0 |a DRUG ACTIVITY 
690 1 0 |a DRUG DESIGN 
690 1 0 |a DRUG MECHANISM 
690 1 0 |a DRUG POTENCY 
690 1 0 |a DRUG STRUCTURE 
690 1 0 |a DRUG TARGETING 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ENZYME INHIBITION 
690 1 0 |a HUMAN 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN STRUCTURE 
690 1 0 |a REVIEW 
690 1 0 |a X RAY CRYSTALLOGRAPHY 
690 1 0 |a ANTAGONISTS AND INHIBITORS 
690 1 0 |a BONE DISEASES 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULARLY TARGETED THERAPY 
690 1 0 |a PARASITIC DISEASES 
690 1 0 |a PARASITOLOGY 
690 1 0 |a PATHOLOGY 
690 1 0 |a ANTIPARASITIC AGENTS 
690 1 0 |a BONE DISEASES 
690 1 0 |a DIPHOSPHONATES 
690 1 0 |a DRUG DESIGN 
690 1 0 |a ENZYME INHIBITORS 
690 1 0 |a GERANYLTRANSTRANSFERASE 
690 1 0 |a HUMANS 
690 1 0 |a MOLECULAR TARGETED THERAPY 
690 1 0 |a PARASITIC DISEASES 
690 1 0 |a POLYISOPRENYL PHOSPHATES 
690 1 0 |a SESQUITERPENES 
650 1 7 |2 spines  |a MALARIA 
700 1 |a Falcone, B.N. 
700 1 |a Szajnman, S.H. 
773 0 |d Taylor and Francis Ltd, 2016  |g v. 11  |h pp. 307-320  |k n. 3  |p Expert Opin. Drug. Discov.  |x 17460441  |t Expert Opinion on Drug Discovery 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958535830&doi=10.1517%2f17460441.2016.1143814&partnerID=40&md5=64c9e9ab1d626caf5a820a4ddeb0af8f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1517/17460441.2016.1143814  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17460441_v11_n3_p307_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17460441_v11_n3_p307_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_17460441_v11_n3_p307_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77095