Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte

We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fenoy, G.E
Otros Autores: Giussi, J.M, von Bilderling, C., Maza, E.M, Pietrasanta, L.I, Knoll, W., Marmisollé, W.A, Azzaroni, O.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18843caa a22016817a 4500
001 PAPER-16938
003 AR-BaUEN
005 20230518204801.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85041846027 
024 7 |2 cas  |a nitrogen, 7727-37-9; perchlorate, 14797-73-0 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCISA 
100 1 |a Fenoy, G.E. 
245 1 0 |a Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte 
260 |b Academic Press Inc.  |c 2018 
270 1 0 |m Marmisollé, W.A.; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química – Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, Argentina; email: wmarmi@inifta.unlp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Aono, M., Ariga, K., The way to nanoarchitectonics and the way of nanoarchitectonics (2016) Adv. Mater., 28, pp. 989-992 
504 |a Ariga, K., Ji, Q., Nakanishi, W., Hill, J.P., Aono, M., Nanoarchitectonics: a new materials horizon for nanotechnology (2015) Mater. Horiz., 2, pp. 406-413 
504 |a Ariga, K., Yamauchi, Y., Aono, M., Commentary: nanoarchitectonics—think about NANO again (2015) APL Mater., 3, p. 61001 
504 |a Zoppe, J.O., Ataman, N.C., Mocny, P., Wang, J., Moraes, J., Klok, H.A., Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes (2017) Chem. Rev., 117, pp. 1105-1318 
504 |a Cortez, M.L., Díaz, G., Marmisollé, W.A., Giussi, J.M., Azzaroni, O., Nanoarchitectonic design of complex materials using polymer brushes as structural and functional units (2018) Polym. Biopolym. Brushes Fundam. Appl. Mater. Biotechnol., pp. 733-756. , O. Azzaroni I. Szleifer 1st ed. John Wiley & Sons, Ltd. Hoboken 
504 |a Azzaroni, O., Brown, A.A., Huck, W.T.S., Tunable wettability by clicking counterions into polyelectrolyte brushes (2007) Adv. Mater., 19, pp. 151-154 
504 |a Moya, S.E., Azzaroni, O., Kelby, T., Donath, E., Huck, W.T.S., Explanation for the apparent absence of collapse of polyelectrolyte brushes in the presence of bulky ions (2007) J. Phys. Chem. B, 111, pp. 7034-7040 
504 |a Strover, L.T., Malmström, J., Stubbing, L.A., Brimble, M.A., Travas-Sejdic, J., Electrochemically-controlled grafting of hydrophilic brushes from conducting polymer substrates (2016) Electrochim. Acta, 188, pp. 57-70 
504 |a Grande, C.D., Tria, M.C., Jiang, G., Ponnapati, R., Park, Y., Zuluaga, F., Grafting of polymers from electrodeposited macro-RAFT initiators on conducting surfaces (2011) React. Funct. Polym., 71, pp. 938-942 
504 |a Chams, A., Dupeyre, G., Jouini, M., Yassar, A., Perruchot, C., Direct growth of polymer brushes from an electrodeposited conducting poly(dithienylpyrrole) layer functionalized with ATRP initiating moieties (2013) J. Electroanal. Chem., 708, pp. 20-30 
504 |a Hackett, A.J., Malmström, J., Molino, P.J., Gautrot, J.E., Zhang, H., Higgins, M.J., Conductive surfaces with dynamic switching in response to temperature and salt (2015) J. Mater. Chem. B, 3, pp. 9285-9294 
504 |a Grande, C.D., Tria, M.C., Jiang, G., Ponnapati, R., Advincula, R., Surface-grafted polymers from electropolymerized polythiophene RAFT agent (2011) Macromolecules, 44, pp. 966-975 
504 |a Pernites, R.B., Foster, E.L., Felipe, M.J.L., Robinson, M., Advincula, R.C., Patterned surfaces combining polymer brushes and conducting polymer via colloidal template electropolymerization (2011) Adv. Mater., 23, pp. 1287-1292 
504 |a Mulfort, K.L., Ryu, J., Zhou, Q., Preparation of surface initiated polystyrenesulfonate films and PEDOT doped by the films (2003) Polymerguil, 44, pp. 3185-3192 
504 |a Zhao, H., Zhu, B., Luo, S.C., Lin, H.A., Nakao, A., Yamashita, Y., Controlled protein absorption and cell adhesion on polymer-brush-grafted poly(3,4-ethylenedioxythiophene) films (2013) ACS Appl. Mater. Interf., 5, pp. 4536-4543 
504 |a Pei, Y., Travas-Sejdic, J., Williams, D.E., Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films (2012) Langmuir, 28, pp. 8072-8083 
504 |a Pei, Y., Travas-Sedjic, J., Williams, D.E., Electrochemical switching of conformation of random polyampholyte brushes grafted onto polypyrrole (2012) Langmuir, 28, pp. 13241-13248 
504 |a Strover, L.T., Malmström, J., Laita, O., Reynisson, J., Aydemir, N., Nieuwoudt, M.K., A new precursor for conducting polymer-based brush interfaces with electroactivity in aqueous solution (2013) Polymer, 54, pp. 1305-1317 
504 |a Massoumi, B., Shafagh-kalvanagh, M., Jaymand, M., Soluble and electrically conductive polyaniline-modified polymers: incorporation of biocompatible polymeric chains through ATRP technique (2017) J. Appl. Polym. Sci., 134, pp. 1-10 
504 |a Liu, P., Su, Z., Surface-initiated atom transfer radical polymerization (SI-ATRP) of MMA from PANI powders (2005) Polym. Bull., 55, pp. 411-417 
504 |a Ghorbani, M., Gheybi, H., Entezami, A.A., Synthesis of water-soluble and conducting polyaniline by growing of poly (N-isopropylacrylamide) brushes via atom transfer radical polymerization method (2012) J. Appl. Polym. Sci., 123, pp. 2299-2308 
504 |a Massoumi, B., Abdollahi, M., Shabestari, S.J., Entezami, A.A., Preparation and characterization of polyaniline N-grafted with poly(ethyl acrylate) synthesized via atom transfer radical polymerization (2013) J. Appl. Polym. Sci., 128, pp. 47-53 
504 |a Marmisollé, W.A., Maza, E., Moya, S., Azzaroni, O., Amine-appended polyaniline as a water dispersible electroactive polyelectrolyte and its integration into functional self-assembled multilayers (2016) Electrochim. Acta, 210, pp. 435-444 
504 |a Marmisollé, W.A., Gregurec, D., Moya, S., Azzaroni, O., Polyanilines with pendant amino groups as electrochemically active copolymers at neutral pH (2015) ChemElectroChem, 2, pp. 2011-2019 
504 |a Yue, J., Epstein, A., XPS study of self-doped conducting polyaniline and parent systems (1991) Macromolecules, 24, pp. 4441-4445 
504 |a Rafti, M., Marmisollé, W.A., Azzaroni, O., Metal-organic frameworks help conducting polymers optimize the efficiency of the oxygen reduction reaction in neutral solutions (2016) Adv. Mater. Interf., 3, p. 1600047 
504 |a Kumar, S.N., Gaillard, F., Bouyssoux, G., Sartre, A., High-resolution XPS studies of electrochemically synthesized conducting polyaniline films (1990) Synth. Met., 36, pp. 111-127 
504 |a Baba, A., Mannen, T., Ohdaira, Y., Shinbo, K., Kato, K., Kaneko, F., Detection of adrenaline on poly(3-aminobenzylamine) ultrathin film by electrochemical-surface plasmon resonance spectroscopy (2010) Langmuir, 26, pp. 18476-18482 
504 |a Ryu, K.S., Jung, J.H., Joo, J., Chang, S.H., Improved conducting states induced by an electrochemical charging process in polyaniline film doped with new dopants (2002) J. Electrochem. Soc., 149, p. A478 
504 |a Lim, H.S., Lee, S.G., Lee, D.H., Lee, D.Y., Lee, S., Cho, K., Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction (2008) Adv. Mater., 20, pp. 4438-4441 
504 |a Zhao, B., Brittain, W.J., Zhou, W., Cheng, S.Z.D., AFM study of tethered polystyrene-b-poly(methyl methacrylate) and polystyrene-b-poly(methyl acrylate) brushes on flat silicate substrates (2000) Macromolecules, 33, pp. 8821-8827 
504 |a Kou, R., Zhang, J., Wang, T., Liu, G., Interactions between polyelectrolyte brushes and hofmeister ions: chaotropes versus kosmotropes (2015) Langmuir 
504 |a Tan, K.Y., Gautrot, J.E., Huck, W.T.S., Formation of pickering emulsions using ion-specific responsive colloids (2011) Langmuir, 27, pp. 1251-1259 
504 |a Zimmermann, R., Gunkel-grabole, G., Bünsow, J., Werner, C., Huck, W.T.S., Duval, J.F.L., Evidence of ion-pairing in cationic brushes from evaluation of brush charging and structure by electrokinetic and surface conductivity (2017) Analysis 
504 |a Azzaroni, O., Moya, S., Farhan, T., Brown, A.A., Huck, W.T.S., Switching the properties of polyelectrolyte brushes via “hydrophobic collapse” (2005) Macromolecules, 38, pp. 10192-10199 
504 |a Azzaroni, O., Gervasi, C., Characterization of responsive polymer brushes at solid/liquid interfaces by electrochemical impedance spectroscopy (2011) Funct. Polym. Films, 2, pp. 809-830 
504 |a Politakos, N., Azinas, S., Moya, S.E., Responsive copolymer brushes of poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) and poly(1H,1H,2H,2H-Perfluorodecyl acrylate) (PPFDA) to modulate surface wetting properties (2016) Macromol. Rapid Commun., 37, pp. 662-667 
504 |a Marmisollé, W.A., Florit, M.I., Posadas, D., Acid-base equilibrium in conducting polymers. The case of reduced polyaniline (2014) J. Electroanal. Chem., 734, pp. 10-17 
504 |a Zhou, F., Hu, H., Yu, B., Osborne, V.L., Huck, W.T.S., Liu, W., Probing the responsive behavior of polyelectrolyte brushes using electrochemical impedance spectroscopy employed to probe the responsive properties of polyelec- swollen and collapsed states. Swollen brushes allow good (2007) Anal. Chem., 79, pp. 176-182 
504 |a Yu, B., Zhou, F., Bo, Y., Hou, X., Liu, W., Electrochemical impedance spectroscopy of poly (1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium chloride) brushes with locally generated Pd (2007) Electrochem. Commun., 9, pp. 1749-1754 
504 |a Rodríguez Presa, M.J., Gassa, L.M., Azzaroni, O., Gervasi, C.A., Estimating diffusion coefficients of probe molecules into polyelectrolyte brushes by electrochemical impedance spectroscopy (2009) Anal. Chem., 81, pp. 7936-7943 
504 |a Rubinson, J.F., Kayinamura, Y.P., Charge transport in conducting polymers: insights from impedance spectroscopy (2009) Chem. Soc. Rev., 38, p. 3339 
504 |a Farina, R., Laugel, N., Pincus, P., Tirrell, M., Brushes of strong polyelectrolytes in mixed mono- and tri-valent ionic media at fixed total ionic strengths (2013) Soft Matter, 9, p. 10458 
504 |a Rubinstein, I., Electrochemical impedance analysis of polyaniline films on electrodes (1987) J. Electrochem. Soc., 134, p. 3078 
504 |a Nieto, F.J.R., Tucceri, R.I., The effect of pH on the charge transport at redox polymer-modified electrodes: an a.c. impedance study applied to poly(o-aminophenol) film electrodes (1996) J. Electroanal. Chem., 416, pp. 1-24 
504 |a Presa, M.J.R., Bandey, H.L., Tucceri, R.I., Florit, M.I., Posadas, D., Hillman, A.R., Film thickness and electrolyte concentration effects on the EIS response of Poly-(o-toluidine) in the conducting state (1999) Electrochim. Acta, 44, pp. 2073-2085 
504 |a Bobacka, J., Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers (1999) Anal. Chem., 71, pp. 4932-4937 
504 |a Roßberg, K., Paasch, G., Dunsch, L., Ludwig, S., The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films (1998) J. Electroanal. Chem., 443, pp. 49-62 
504 |a Yuan, X.-Z., Song, C., Wang, H., Zhang, J., Electrochemical Impedance Spectroscopy in PEM Fuel Cells (2010), Springer London London; Diamanti, E., Gregurec, D., Rodríguez-Presa, M.J., Gervasi, C.A., Azzaroni, O., Moya, S.E., High resistivity lipid bilayers assembled on polyelectrolyte multilayer cushions: an impedance study (2016) Langmuir, 32, pp. 6263-6271 
504 |a Marmisollé, W.A., Florit, M.I., Posadas, D., Inés Florit, M., Electrochemically induced ageing of polyaniline. An electrochemical impedance spectroscopy study (2012) J. Electroanal. Chem., 673, pp. 65-71 
504 |a Florit, M.I., The effect of temperature on the impedance of poly-o-toluidine in 3.7 M H 2 SO 4 (1999) J. Electrochem. Soc., 146, p. 2592 
504 |a Inzelt, G., Conducting Polymers (2012), Springer Berlin Heidelberg Berlin, Heidelberg; Orazem, M.E., Shukla, P., Membrino, M.A., Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements (2002) Electrochim. Acta, 47, pp. 2027-2034 
520 3 |a We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backbone nitrogen atoms that are implicated in the electronic structure of the conducting polymers. Moreover, perchlorate anions interact very strongly with the quaternary ammonium pendant groups of PMETAC through ion pairing. Therefore, the grafting does not only keep the electroactivity of PABA in aqueous solutions but it adds the ion-actuation properties of the PMETAC brush to the modified electrode as demonstrated by contact angle measurements and electrochemical methods. In this way, the conjugation of the electron transfer properties of the conducting polymer with the anion responsiveness of the integrated brush renders perchlorate actuation of the electrochemical response. These results constitute a rational integration of nanometer-sized polymer building blocks that yields synergism of functionalities and illustrate the potentialities of nanoarchitectonics for pushing the limits of soft material science into the nanoworld. © 2018 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: 3911 
536 |a Detalles de la financiación: Austrian Institute of Technology 
536 |a Detalles de la financiación: Marie Curie Cancer Care 
536 |a Detalles de la financiación: Ashikaga Institute of Technology 
536 |a Detalles de la financiación: Universidad Nacional de La Plata, UNLP, PPID-X016 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-2015-0346, PICT-2013-0905, PICT-2015-0239 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220130100619CO 
536 |a Detalles de la financiación: 612704 
536 |a Detalles de la financiación: The authors acknowledge financial support from ANPCyT ( PICT-2013-0905 , PICT-2015-0239 , PICT-2015-0346 ), Universidad Nacional de La Plata ( PPID-X016 ), CONICET ( PIP 11220130100619CO ), the Austrian Institute of Technology GmbH (AIT–CONICET Partner Group: “Exploratory Research for Advanced Technologies in Supramolecular Materials Science” – Exp. 4947/11, Res. No. 3911, 28-12-2011) and the Marie Curie project “ Hierarchical functionalization and assembly of Graphene for multiple device fabrication ” ( HiGRAPHEN ) (Grant ref: 612704 ). JMG, CvB, EMM, LIP, WAM and OA are CONICET staff members. GEF gratefully acknowledges a Doctoral Scholarship from CONICET. 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química – Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, La Plata, 1900, Argentina 
593 |a Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, 1 piso (1650), Buenos Aires, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182, San Sebastián, Gipuzkoa 20009, Spain 
593 |a Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Centro de Microscopías Avanzadas Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Austrian Institute of Technology, Donau-City-Strasse 1, Vienna, 1220, Austria 
690 1 0 |a ANION RESPONSIVENESS 
690 1 0 |a CONDUCTING POLYMERS 
690 1 0 |a NANOARCHITECTONICS 
690 1 0 |a POLYANILINE 
690 1 0 |a POLYMER BRUSHES 
690 1 0 |a CHLORINE COMPOUNDS 
690 1 0 |a ELECTRONIC STRUCTURE 
690 1 0 |a GRAFTING (CHEMICAL) 
690 1 0 |a INORGANIC COMPOUNDS 
690 1 0 |a IONS 
690 1 0 |a NANOSCIENCE 
690 1 0 |a NEGATIVE IONS 
690 1 0 |a POLYANILINE 
690 1 0 |a POLYELECTROLYTES 
690 1 0 |a REDOX REACTIONS 
690 1 0 |a SOLUTIONS 
690 1 0 |a COVALENT MODIFICATIONS 
690 1 0 |a ELECTROCHEMICAL METHODS 
690 1 0 |a ELECTROCHEMICAL RESPONSE 
690 1 0 |a HYDROPHOBIC COLLAPSE 
690 1 0 |a NANOARCHITECTONICS 
690 1 0 |a POLYELECTROLYTE BRUSHES 
690 1 0 |a POLYMER BRUSHES 
690 1 0 |a POLYMER BUILDING BLOCKS 
690 1 0 |a CONDUCTING POLYMERS 
690 1 0 |a NANOFILM 
690 1 0 |a NITROGEN 
690 1 0 |a PERCHLORATE 
690 1 0 |a POLYAMINOBENZYLAMINE 
690 1 0 |a POLYELECTROLYTE 
690 1 0 |a POLYMER 
690 1 0 |a QUATERNARY AMMONIUM DERIVATIVE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a CONTACT ANGLE 
690 1 0 |a ELECTROCHEMICAL ANALYSIS 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a MODULATION 
690 1 0 |a PRIORITY JOURNAL 
700 1 |a Giussi, J.M. 
700 1 |a von Bilderling, C. 
700 1 |a Maza, E.M. 
700 1 |a Pietrasanta, L.I. 
700 1 |a Knoll, W. 
700 1 |a Marmisollé, W.A. 
700 1 |a Azzaroni, O. 
773 0 |d Academic Press Inc., 2018  |g v. 518  |h pp. 92-101  |p J. Colloid Interface Sci.  |x 00219797  |w (AR-BaUEN)CENRE-15  |t Journal of Colloid and Interface Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041846027&doi=10.1016%2fj.jcis.2018.02.014&partnerID=40&md5=21d7978d6f699b6a223e67ae99ef2010  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jcis.2018.02.014  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00219797_v518_n_p92_Fenoy  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219797_v518_n_p92_Fenoy  |y Registro en la Biblioteca Digital 
961 |a paper_00219797_v518_n_p92_Fenoy  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 77891