Spectroscopy in Complex Environments from QM-MM Simulations

The applications of multiscale quantum-classical (QM-MM) approaches have shown an extraordinary expansion and diversification in the last couple of decades. A great proportion of these efforts have been devoted to interpreting and reproducing spectroscopic experiments in a variety of complex environ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Morzan, U.N
Otros Autores: Alonso De Armiño, D.J, Foglia, N.O, Ramírez, F., González Lebrero, M.C, Scherlis, D.A, Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 76482caa a22048257a 4500
001 PAPER-17009
003 AR-BaUEN
005 20230607131907.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85045202559 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CHREA 
100 1 |a Morzan, U.N. 
245 1 0 |a Spectroscopy in Complex Environments from QM-MM Simulations 
260 |b American Chemical Society  |c 2018 
270 1 0 |m Scherlis, D.A.; Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II C1428EHA, Argentina; email: damian@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Voityuk, A.A., Effects of dynamic disorder on exciton delocalization and photoinduced charge separation in DNA (2013) Photochem. Photobiol. Sci., 12, pp. 1303-1309 
504 |a Zhao, Y., Cao, Z., Absorption spectra of nucleic acid bases in water environment: Insights into from combined QM/MM and cluster-continuum model calculations (2013) J. Theor. Comput. Chem., 12 
504 |a Etienne, T., Gattuso, H., Monari, A., Assfeld, X., QM/MM modeling of Harmane cation fluorescence spectrum in water solution and interacting with DNA (2014) Comput. Theor. Chem., 1040-1041, pp. 367-372 
504 |a Spata, V.A., Matsika, S., Role of excitonic coupling and charge-transfer states in the absorption and CD spectra of Adenine-based oligonucleotides investigated through QM/MM simulations (2014) J. Phys. Chem. A, 118, pp. 12021-12030 
504 |a Sun, G., Ju, M., Zang, H., Zhao, Y., Liang, W., Mechanisms of large Stokes shift and aggregation-enhanced emission of osmapentalyne cations in solution: Combined MD simulations and QM/MM calculations (2015) Phys. Chem. Chem. Phys., 17, pp. 24438-24445 
504 |a Altavilla, S.F., Segarra-Martí, J., Nenov, A., Conti, I., Rivalta, I., Garavelli, M., Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate (2015) Front. Chem., 3, p. 29 
504 |a Sakata, T., Kawashima, Y., Nakano, H., Solvent effect on the absorption spectra of coumarin 120 in water: A combined quantum mechanical and molecular mechanical study (2011) J. Chem. Phys., 134 
504 |a Cerezo, J., Avila Ferrer, F.J., Prampolini, G., Santoro, F., Modeling solvent broadening on the vibronic spectra of a series of coumarin dyes. from implicit to explicit solvent models (2015) J. Chem. Theory Comput., 11, pp. 5810-5825 
504 |a Cerezo, J., Santoro, F., Prampolini, G., Comparing classical approaches with empirical or quantum-mechanically derived force fields for the simulation of electronic lineshapes: Application to coumarin dyes (2016) Theor. Chem. Acc., 135, p. 143 
504 |a Wu, X., Teuler, J., Cailliez, F., Clavaguéra, C., Salahub, D.R., De La Lande, A., Simulating electron dynamics in polarizable environments (2017) J. Chem. Theory Comput., 13, pp. 3985-4002 
504 |a Murugan, N.A., Dasgupta, I., Chakraborty, A., Ganguli, N., Kongsted, J., gren, H., How crucial are finite temperature and solvent effects on structure and absorption spectra of Si10? (2012) J. Phys. Chem. C, 116, pp. 26618-26624 
504 |a Li, X., Carravetta, V., Li, C., Monti, S., Rinkevicius, Z., gren, H., Optical properties of gold nanoclusters functionalized with a small organic compound: Modeling by an integrated quantum-classical approach (2016) J. Chem. Theory Comput., 12, pp. 3325-3339 
504 |a Cuevasanta, E., Zeida, A., Carballal, S., Wedmann, R., Morzan, U.N., Trujillo, M., Radi, R., Alvarez, B., Insights into the mechanism of the reaction between hydrogen sulfide and peroxynitrite (2015) Free Radical Biol. Med., 80, pp. 93-100 
504 |a Marcolongo, J., Morzan, U., Zeida, A., Scherlis, D., Olabe, J., Nitrosodisulfide [S2NO]- (perthionitrite) is a true intermediate during the "cross-talk" of nitrosyl and sulfide (2016) Phys. Chem. Chem. Phys., 18, pp. 30047-30052 
504 |a Marcolongo, J.P., Zeida, A., Slep, L.D., Olabe, J.A., Thionitrous Acid/Thionitrite and Perthionitrite Intermediates in the "crosstalk" of NO and H2S (2017) Adv. Inorg. Chem., 70, pp. 277-309 
504 |a Berendsen, H.J.C., Van Der Spoel, D.V., Van Drunen, R., A message-passing parallel molecular dynamics implementation (1995) Comput. Phys. Commun., 91, pp. 43-56 
504 |a Jorgensen, W., Tirado-Rives, J., The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin (1988) J. Am. Chem. Soc., 110, pp. 1657-1666 
504 |a Pederzoli, M., Sobek, L., Brabec, J., Kowalski, K., Cwiklik, L., Pittner, J., Fluorescence of PRODAN in water: A computational QM/MM MD study (2014) Chem. Phys. Lett., 597, pp. 57-62 
504 |a Mennucci, B., Caricato, M., Ingrosso, F., Cappelli, C., Cammi, R., Tomasi, J., Scalmani, G., Frisch, M.J., How the environment controls absorption and fluorescence spectra of PRODAN: A quantum-mechanical study in homogeneous and heterogeneous media (2008) J. Phys. Chem. B, 112, pp. 414-423 
504 |a Marini, A., Muñoz Losa, A., Biancardi, A., Mennucci, B., What is solvatochromism? (2010) J. Phys. Chem. B, 114, pp. 17128-17135 
504 |a Barucha-Kraszewska, J., Kraszewski, S., Jurkiewicz, P., Ramseyer, C., Hof, M., Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states (2010) Biochim. Biophys. Acta, Biomembr., 1798, pp. 1724-1734 
504 |a Nitschke, W.K., Vequi-Suplicy, C.C., Coutinho, K., Stassen, H., Molecular dynamics investigations of PRODAN in a DLPC bilayer (2012) J. Phys. Chem. B, 116, pp. 2713-2721 
504 |a Fukuda, R., Chidthong, R., Cammi, R., Ehara, M., Optical absorption and fluorescence of PRODAN in solution: Quantum chemical study based on the symmetry-adapted cluster-configuration interaction method (2012) Chem. Phys. Lett., 552, pp. 53-57 
504 |a Loudet, A., Burgess, K., BODIPY dyes and their derivatives: Syntheses and spectroscopic properties (2007) Chem. Rev., 107, pp. 4891-4932 
504 |a Erten-Ela, S., Yilmaz, M.D., Icli, B., Dede, Y., Icli, S., Akkaya, E.U., A Panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells (2008) Org. Lett., 10, pp. 3299-3302 
504 |a Kamkaew, A., Lim, S.H., Lee, H.B., Kiew, L.V., Chung, L.Y., Burgess, K., BODIPY dyes in photodynamic therapy (2013) Chem. Soc. Rev., 42, pp. 77-88 
504 |a Santra, M., Moon, H., Park, M.-H., Lee, T.-W., Kim, Y.K., Ahn, K.H., Dramatic substituent effects on the photoluminescence of boron complexes of 2-(benzothiazol-2-yl)phenols (2012) Chem. - Eur. J., 18, pp. 9886-9893 
504 |a Gilbert, A.T.B., Besley, N.A., Gill, P.M.W., Self-consistent field calculations of excited states using the maximum overlap method (MOM) (2008) J. Phys. Chem. A, 112, pp. 13164-13171 
504 |a Briggs, E.A., Besley, N.A., Robinson, D., QM/MM excited state molecular dynamics and fluorescence spectroscopy of BODIPY (2013) J. Phys. Chem. A, 117, pp. 2644-2650 
504 |a Rudiuk, S., Franceschi-Messant, S., Chouini-Lalanne, N., Perez, E., Rico-Lattes, I., DNA photo-oxidative damage hazard in transfection complexes (2011) Photochem. Photobiol., 87, pp. 103-108 
504 |a Cuquerella, M.C., Lhiaubet-Vallet, V., Cadet, J., Miranda, M.A., Benzophenone photosensitized DNA damage (2012) Acc. Chem. Res., 45, pp. 1558-1570 
504 |a Thompson, M.A., Schenter, G.K., Excited states of the bacteriochlorophyll b dimer of rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarization (1995) J. Phys. Chem., 99, pp. 6374-6386 
504 |a Hasegawa, J., Ohkawa, K., Nakatsuji, H., Excited states of the photosynthetic reaction center of rhodopseudomonas viridis: SACCI study (1998) J. Phys. Chem. B, 102, pp. 10410-10419 
504 |a Reimers, J.R., Hutter, M.C., Hughes, J.M., Hush, N.S., Nature of the special-pair radical cation in bacterial photosynthesis (2000) Int. J. Quantum Chem., 80, pp. 1224-1243 
504 |a Duñach, M., Marti, T., Khorana, H.G., Rothschild, K.J., UV-visible spectroscopy of bacteriorhodopsin mutants: Substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 9873-9877 
504 |a Imamoto, Y., Koshimizu, H., Mihara, K., Hisatomi, O., Mizukami, T., Tsujimoto, K., Kataoka, M., Tokunaga, F., Roles of amino acid residues near the chromophore of photoactive yellow protein (2001) Biochemistry, 40, pp. 4679-4685 
504 |a Shimono, K., Ikeura, Y., Sudo, Y., Iwamoto, M., Kamo, N., Environment around the chromophore in pharaonis phoborhodopsin: Mutation analysis of the retinal binding site (2001) Biochim. Biophys. Acta, Biomembr., 1515, pp. 92-100 
504 |a Houjou, H., Inoue, Y., Sakurai, M., Study of the opsin shift of bacteriorhodopsin: Insight from QM/MM calculations with electronic polarization effects of the protein environment (2001) J. Phys. Chem. B, 105, pp. 867-879 
504 |a Sakurai, M., Sakata, K., Saito, S., Nakajima, S., Inoue, Y., Decisive role of electronic polarization of the protein environment in determining the absorption maximum of halorhodopsin (2003) J. Am. Chem. Soc., 125, pp. 3108-3112 
504 |a Schreiber, M., Buß, V., Sugihara, M., Exploring the Opsin shift with ab initio methods: Geometry and counterion effects on the electronic spectrum of retinal (2003) J. Chem. Phys., 119, pp. 12045-12048 
504 |a Fujimoto, K., Hasegawa, J.-Y., Hayashi, S., Kato, S., Nakatsuji, H., Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study (2005) Chem. Phys. Lett., 414, pp. 239-242 
504 |a Hoffmann, M., Wanko, M., Strodel, P., König, P.H., Frauenheim, T., Schulten, K., Thiel, W., Elstner, M., Color tuning in rhodopsins: The mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II (2006) J. Am. Chem. Soc., 128, pp. 10808-10818 
504 |a Trabanino, R.J., Vaidehi, N., Goddard, W.A., Exploring the molecular mechanism for color distinction in humans (2006) J. Phys. Chem. B, 110, pp. 17230-17239 
504 |a Coto, P.B., Strambi, A., Ferré, N., Olivucci, M., The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 17154-17159 
504 |a Fujimoto, K., Hasegawa, J.-Y., Hayashi, S., Nakatsuji, H., On the color-tuning mechanism of human-blue visual pigment: SAC-CI and QM/MM study (2006) Chem. Phys. Lett., 432, pp. 252-256 
504 |a Fujimoto, K., Hayashi, S., Hasegawa, J.-Y., Nakatsuji, H., Theoretical studies on the color-tuning mechanism in retinal proteins (2007) J. Chem. Theory Comput., 3, pp. 605-618 
504 |a Bravaya, K., Bochenkova, A., Granovsky, A., Nemukhin, A., An opsin shift in rhodopsin: Retinal S0-S1 excitation in protein, in solution, and in the gas phase (2007) J. Am. Chem. Soc., 129, pp. 13035-13042 
504 |a Altun, A., Yokoyama, S., Morokuma, K., Spectral tuning in visual pigments: An ONIOM(QM:MM) study on bovine rhodopsin and its mutants (2008) J. Phys. Chem. B, 112, pp. 6814-6827 
504 |a Fujimoto, K., Hasegawa, J., Nakatsuji, H., Origin of color tuning in human red, green, and blue cone pigments: SAC-CI and QM/MM study (2008) Chem. Phys. Lett., 462, pp. 318-320 
504 |a Wanko, M., Hoffmann, M., Frauenheim, T., Elstner, M., Effect of polarization on the opsin shift in rhodopsins. 1. A combined QM/QM/MM model for bacteriorhodopsin and pharaonis sensory rhodopsin II (2008) J. Phys. Chem. B, 112, pp. 11462-11467 
504 |a Altun, A., Yokoyama, S., Morokuma, K., Mechanism of spectral tuning going from retinal in vacuo to bovine rhodopsin and its mutants: Multireference ab initio quantum mechanics/molecular mechanics studies (2008) J. Phys. Chem. B, 112, pp. 16883-16890 
504 |a Altun, A., Yokoyama, S., Morokuma, K., Quantum mechanical/molecular mechanical studies on spectral tuning mechanisms of visual pigments and other photoactive proteins (2008) Photochem. Photobiol., 84, pp. 845-854 
504 |a Altun, A., Yokoyama, S., Morokuma, K., Color tuning in short wavelength-sensitive human and mouse visual pigments: Ab initio quantum mechanics/molecular mechanics studies (2009) J. Phys. Chem. A, 113, pp. 11685-11692 
504 |a Rajamani, R., Lin, Y., Gao, J., The opsin shift and mechanism of spectral tuning in rhodopsin (2011) J. Comput. Chem., 32, pp. 854-865 
504 |a Sekharan, S., Morokuma, K., Why 11-cis-retinal? Why not 7-cis-, 9-cis-, or 13-cis-retinal in the eye? (2011) J. Am. Chem. Soc., 133, pp. 19052-19055 
504 |a Melaccio, F., Ferre, N., Olivucci, M., Quantum chemical modeling of rhodopsin mutants displaying switchable colors (2012) Phys. Chem. Chem. Phys., 14, pp. 12485-12495 
504 |a Frähmcke, J.S., Wanko, M., Elstner, M., Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods (2012) J. Phys. Chem. B, 116, pp. 3313-3321 
504 |a Ryazantsev, M.N., Altun, A., Morokuma, K., Color tuning in rhodopsins: The origin of the spectral shift between the chloride-bound and anion-free forms of halorhodopsin (2012) J. Am. Chem. Soc., 134, pp. 5520-5523 
504 |a Sekharan, S., Katayama, K., Kandori, H., Morokuma, K., Color vision: OH-Site rule for seeing red and green (2012) J. Am. Chem. Soc., 134, pp. 10706-10712 
504 |a Valsson, O., Campomanes, P., Tavernelli, I., Rothlisberger, U., Filippi, C., Rhodopsin absorption from first principles: Bypassing common pitfalls (2013) J. Chem. Theory Comput., 9, pp. 2441-2454 
504 |a Pal, R., Sekharan, S., Batista, V.S., Spectral tuning in halorhodopsin: The chloride pump photoreceptor (2013) J. Am. Chem. Soc., 135, pp. 9624-9627 
504 |a Campomanes, P., Neri, M., Horta, B.A.C., Röhrig, U.F., Vanni, S., Tavernelli, I., Rothlisberger, U., Origin of the spectral shifts among the early intermediates of the rhodopsin photocycle (2014) J. Am. Chem. Soc., 136, pp. 3842-3851 
504 |a Dokukina, I., Weingart, O., Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin (2015) Phys. Chem. Chem. Phys., 17, pp. 25142-25150 
504 |a Xie, P., Zhou, P., Alsaedi, A., Zhang, Y., PH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein (2017) Spectrochim. Acta, Part A, 174, pp. 25-31 
504 |a Prendergast, F.G., Mann, K.G., Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea (1978) Biochemistry, 17, pp. 3448-3453 
504 |a Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington, S.J., Crystal structure of the aequorea victoria green fluorescent protein (1996) Science, 273, pp. 1392-1395 
504 |a Tsien, R.Y., The green fluorescent protein (1998) Annu. Rev. Biochem., 67, pp. 509-544 
504 |a Acharya, A., Bogdanov, A.M., Grigorenko, B.L., Bravaya, K.B., Nemukhin, A.V., Lukyanov, K.A., Krylov, A.I., Photoinduced chemistry in fluorescent proteins: Curse or blessing? (2017) Chem. Rev., 117, pp. 758-795 
504 |a Marques, M.A.L., López, X., Varsano, D., Castro, A., Rubio, A., Time-dependent density-functional approach for biological chromophores: The case of the green fluorescent protein (2003) Phys. Rev. Lett., 90 
504 |a Creemers, T.M.H., Lock, A.J., Subramaniam, V., Jovin, T.M., Völker, S., Photophysics and optical switching in green fluorescent protein mutants (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 2974-2978 
504 |a Patnaik, S.S., Trohalaki, S., Naik, R.R., Stone, M.O., Pachter, R., Computational study of the absorption spectra of green fluorescent protein mutants (2007) Biopolymers, 85, pp. 253-263 
504 |a Hasegawa, J., Ise, T., Fujimoto, K.J., Kikuchi, A., Fukumura, E., Miyawaki, A., Shiro, Y., Excited states of fluorescent proteins, mKO and DsRed: Chromophore-protein electrostatic interaction behind the color variations (2010) J. Phys. Chem. B, 114, pp. 2971-2979 
504 |a Filippi, C., Buda, F., Guidoni, L., Sinicropi, A., Bathochromic shift in green fluorescent protein: A Puzzle for QM/MM approaches (2012) J. Chem. Theory Comput., 8, pp. 112-124 
504 |a Wachter, R.M., King, B.A., Heim, R., Kallio, K., Tsien, R.Y., Boxer, S.G., Remington, S.J., Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein (1997) Biochemistry, 36, pp. 9759-9765 
504 |a Bublitz, G., King, B.A., Boxer, S.G., Electronic structure of the chromophore in green fluorescent protein (GFP) (1998) J. Am. Chem. Soc., 120, pp. 9370-9371 
504 |a Grigorenko, B.L., Polyakov, I.V., Savitsky, A.P., Nemukhin, A.V., Unusual emitting states of the Kindling fluorescent protein: Appearance of the cationic chromophore in the GFP family (2013) J. Phys. Chem. B, 117, pp. 7228-7234 
504 |a Armengol, P., Gelabert, R., Moreno, M., Lluch, J.M., Theoretical computer-aided mutagenic study on the triple green fluorescent protein mutant S65T/H148D/Y145F (2015) ChemPhysChem, 16, pp. 2134-2139 
504 |a Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K., Tsien, R.Y., The structure of the chromophore within DsRed, a red fluorescent protein from coral (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 11990-11995 
504 |a Sun, Q., Li, Z., Lan, Z., Pfisterer, C., Doerr, M., Fischer, S., Smith, S.C., Thiel, W., Isomerization mechanism of the HcRed fluorescent protein chromophore (2012) Phys. Chem. Chem. Phys., 14, pp. 11413-11424 
504 |a Sánchez-García, E., Doerr, M., Hsiao, Y., Thiel, W., QM/MM study of the monomeric red fluorescent protein DsRed.M1 (2009) J. Phys. Chem. B, 113, pp. 16622-16631 
504 |a Sánchez-García, E., Doerr, M., Thiel, W., QM/MM study of the absorption spectra of DsRed.M1 chromophores (2010) J. Comput. Chem., 31, pp. 1603-1612 
504 |a Bravaya, K.B., Subach, O.M., Korovina, N., Verkhusha, V.V., Krylov, A.I., Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: The elusive blue intermediate revealed (2012) J. Am. Chem. Soc., 134, pp. 2807-2814 
504 |a Armengol, P., Gelabert, R., Moreno, M., Lluch, J.M., Chromophore interactions leading to different absorption spectra in mNeptune1 and mCardinal red fluorescent proteins (2016) Phys. Chem. Chem. Phys., 18, pp. 16964-16976 
504 |a Chen, F., Zeng, Q., Zhuang, W., Liang, W., Characterizing the structures, spectra, and energy landscapes involved in the excited-state proton transfer process of red fluorescent protein LSSmKate1 (2016) J. Phys. Chem. B, 120, pp. 9833-9842 
504 |a Yagi, K., Yamano, T., (1980) Flavins and Flavoproteins: Proceedings of the 6th International Symposium, , Japan Scientific Societies Press: Tokyo and University Park Press: Baltimore, MD 
504 |a Cannuccia, E., Pulci, O., Sole, R.D., Cascella, M., Optical properties of flavin mononucleotide: A QM/MM study of protein environment effects (2011) Chem. Phys., 389, pp. 35-38 
504 |a Khrenova, M.G., Nemukhin, A.V., Domratcheva, T., Theoretical characterization of the flavin-based fluorescent protein iLOV and its Q489K mutant (2015) J. Phys. Chem. B, 119, pp. 5176-5183 
504 |a Zanetti-Polzi, L., Aschi, M., Daidone, I., Amadei, A., Theoretical modeling of the absorption spectrum of aqueous riboflavin (2017) Chem. Phys. Lett., 669, pp. 119-124 
504 |a He, Z., Martin, C.H., Birge, R., Freed, K.F., Theoretical studies on excited states of a phenolate anion in the environment of photoactive yellow protein (2000) J. Phys. Chem. A, 104, pp. 2939-2952 
504 |a Gromov, E.V., Burghardt, I., Köppel, H., Cederbaum, L.S., Electronic structure of the PYP chromophore in its native protein environment (2007) J. Am. Chem. Soc., 129, pp. 6798-6806 
504 |a Wei, L., Wang, H., Chen, X., Fang, W., Wang, H., A comprehensive study of isomerization and protonation reactions in the photocycle of the photoactive yellow protein (2014) Phys. Chem. Chem. Phys., 16, pp. 25263-25272 
504 |a Gamiz-Hernandez, A.P., Kaila, V.R.I., Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein (2016) Phys. Chem. Chem. Phys., 18, pp. 2802-2809 
504 |a Cascella, M., Cuendet, M.A., Tavernelli, I., Rothlisberger, U., Optical spectra of Cu(II)-azurin by hybrid TDDFT-molecular dynamics simulations (2007) J. Phys. Chem. B, 111, pp. 10248-10252 
504 |a Penfield, K.W., Gewirth, A.A., Solomon, E.I., Electronic structure and bonding of the blue copper site in plastocyanin (1985) J. Am. Chem. Soc., 107, pp. 4519-4529 
504 |a Cascella, M., Magistrato, A., Tavernelli, I., Carloni, P., Rothlisberger, U., Role of protein frame and solvent for the redox properties of azurin from Pseudomonas aeruginosa (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 19641-19646 
504 |a (1978) The Porphyrins, III. , Dolphin, D., Ed.; Academic Press: Cambridge, MA 
504 |a Rimington, C., Spectral-absorption coefficients of some porphyrins in the Soret-band region (1960) Biochem. J., 75, pp. 620-623 
504 |a Momenteau, M., Reed, C.A., Synthetic heme dioxygen complexes (1994) Chem. Rev., 94, pp. 659-698 
504 |a Loew, G.H., Harris, D.L., Role of the Heme active site and protein environment in structure, spectra, and function of the cytochrome P450s (2000) Chem. Rev., 100, pp. 407-419 
504 |a Li, Z., Mukamel, S., First-principles simulation of amide and aromatic side chain ultraviolet spectroscopy of a cyclic dipeptide (2007) J. Phys. Chem. A, 111, pp. 11579-11583 
504 |a Rodriguez, J.J., Mukamel, S., Dissecting two-dimensional ultraviolet spectra of amyloid fibrils into beta-strand and turn contributions (2012) J. Phys. Chem. B, 116, pp. 8830-8835 
504 |a Lam, A.R., Jiang, J., Rojas, A., Scheraga, H., Mukamel, S., Monitoring the mechanism of fiber assembly of AB peptides in Alzheimer's disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy (2012) Biophys. J., 102, p. 733a 
504 |a Lam, A., Jiang, J., Mukamel, S., Distinguishing amyloid fibril structures in Alzheimers disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy (2011) Biochemistry, 50, pp. 9809-9816 
504 |a Ren, H., Jiang, J., Mukamel, S., Deep UV resonance Raman spectroscopy of β-sheet amyloid fibrils: A QM/MM simulation (2011) J. Phys. Chem. B, 115, pp. 13955-13962 
504 |a Jiang, J., Mukamel, S., Two-dimensional near-ultraviolet spectroscopy of aromatic residues in amyloid fibrils: A first principles study (2011) Phys. Chem. Chem. Phys., 13, pp. 2394-2400 
504 |a Jiang, J., Mukamel, S., Probing amyloid fibril growth by two-dimensional near-ultraviolet spectroscopy (2011) J. Phys. Chem. B, 115, pp. 6321-6328 
504 |a Jiang, J., Mukamel, S., Two-dimensional ultraviolet (2DUV) spectroscopic tools for identifying fibrillation propensity of protein residue sequences (2010) Angew. Chem., Int. Ed., 49, pp. 9666-9669 
504 |a Jiang, J., Abramavicius, D., Falvo, C., Bulheller, B.M., Hirst, J.D., Mukamel, S., Simulation of two-dimensional ultraviolet spectroscopy of amyloid fibrils (2010) J. Phys. Chem. B, 114, pp. 12150-12156 
504 |a Jiang, J., Abramavicius, D., Bulheller, B.M., Hirst, J.D., Mukamel, S., Ultraviolet spectroscopy of protein backbone transitions in aqueous solution: Combined QM and MM simulations (2010) J. Phys. Chem. B, 114, pp. 8270-8277 
504 |a Abramavicius, D., Jiang, J., Bulheller, B.M., Hirst, J.D., Mukamel, S., Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone (2010) J. Am. Chem. Soc., 132, pp. 7769-7775 
504 |a Tseng, C.-H., Sándor, P., Kotur, M., Weinacht, T.C., Matsika, S., Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV (2012) J. Phys. Chem. A, 116, pp. 2654-2661 
504 |a West, B.A., Womick, J.M., Moran, A.M., Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies (2011) J. Phys. Chem. A, 115, pp. 8630-8637 
504 |a Womick, J.M., Moran, A.M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes (2011) J. Phys. Chem. B, 115, pp. 1347-1356 
504 |a Brixner, T., Stenger, J., Vaswani, H.M., Cho, M., Blankenship, R.E., Fleming, G.R., Two-dimensional spectroscopy of electronic couplings in photosynthesis (2005) Nature, 434, pp. 625-628 
504 |a Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M., Brumer, P., Scholes, G.D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature (2010) Nature, 463, pp. 644-647 
504 |a Panitchayangkoon, G., Hayes, D., Fransted, K.A., Caram, J.R., Harel, E., Wen, J., Blankenship, R.E., Engel, G.S., Long-lived quantum coherence in photosynthetic complexes at physiological temperature (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 12766-12770 
504 |a Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mančal, T., Cheng, Y.-C., Blankenship, R.E., Fleming, G.R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems (2007) Nature, 446, pp. 782-786 
504 |a Ginsberg, N.S., Cheng, Y.-C., Fleming, G.R., Two-dimensional electronic spectroscopy of molecular aggregates (2009) Acc. Chem. Res., 42, pp. 1352-1363 
504 |a Mukamel, S., (1995) Principles of Nonlinear Optical Spectroscopy, , Oxford University Press: New York 
504 |a Zhuang, W., Hayashi, T., Mukamel, S., Coherent multidimensional vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges (2009) Angew. Chem., Int. Ed., 48, pp. 3750-3781 
504 |a Abramavicius, D., Palmieri, B., Voronine, D.V., Sanda, F., Mukamel, S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; Quasiparticle versus supermolecule perspectives (2009) Chem. Rev., 109, pp. 2350-2408 
504 |a Garavelli, M., Bernardi, F., Cembran, A., Computation of photochemical reaction mechanisms in organic chemistry (2005) Theor. Comput. Chem., 16, pp. 191-223 
504 |a Rivalta, I., Nenov, A., Cerullo, G., Mukamel, S., Garavelli, M., Ab initio simulations of two-dimensional electronic spectra: The SOS//QM/MM approach (2014) Int. J. Quantum Chem., 114, pp. 85-93 
504 |a Fortenberry, R.C., Huang, X., Yachmenev, A., Thiel, W., Lee, T.J., On the use of quartic force fields in variational calculations (2013) Chem. Phys. Lett., 574, pp. 1-12 
504 |a Alonso De Armiño, D.J., Bustamante, C.M., A quartic force field coordinate substitution scheme using hyperbolic sine coordinates (2017) Int. J. Quantum Chem., 117, p. e25390 
504 |a Strobusch, D., Scheurer, C., Adaptive sparse grid expansions of the vibrational Hamiltonian (2014) J. Chem. Phys., 140 
504 |a Hermes, M.R., Hirata, S., Stochastic algorithm for size-extensive vibrational self-consistent field methods on fully anharmonic potential energy surfaces (2014) J. Chem. Phys., 141 
504 |a Neff, M., Rauhut, G., Toward large scale vibrational configuration interaction calculations (2009) J. Chem. Phys., 131 
504 |a Hermes, M.R., Hirata, S., Diagrammatic theories of anharmonic molecular vibrations (2015) Int. Rev. Phys. Chem., 34, pp. 71-97 
504 |a Thomsen, B., Yagi, K., Christiansen, O., Optimized coordinates in vibrational coupled cluster calculations (2014) J. Chem. Phys., 140 
504 |a McQuarrie, D.A., (1976) Statistical Mechanics, p. 641. , 1 st ed.; Harper & Row: London 
504 |a Thomas, M., Brehm, M., Fligg, R., Vöhringer, P., Kirchner, B., Computing vibrational spectra from ab initio molecular dynamics (2013) Phys. Chem. Chem. Phys., 15, pp. 6608-6622 
504 |a Futrelle, R., McGinty, D., Calculation of spectra and correlation functions from molecular dynamics data using the fast Fourier transform (1971) Chem. Phys. Lett., 12, pp. 285-287 
504 |a Morril, T., (1981) Spectrometric Identification of Organic Compounds, , 4 th ed.; John Wiley and Sons: New York 
504 |a Martínez, M., Gaigeot, M.-P., Borgis, D., Vuilleumier, R., Extracting effective normal modes from equilibrium dynamics at finite temperature (2006) J. Chem. Phys., 125 
504 |a Walewski, L., Bala, P., Elstner, M., Frauenheim, T., Lesyng, B., Fast QM/MM method and its application to molecular systems (2004) Chem. Phys. Lett., 397, pp. 451-458 
504 |a Schwörer, M., Wichmann, C., Tavan, P., A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water (2016) J. Chem. Phys., 144 
504 |a Tirler, A.O., Hofer, T.S., A Comparative study of [CaEDTA]-2 and [MgEDTA]-2: Structural and dynamical insights from quantum mechanical charge field molecular dynamics (2015) J. Phys. Chem. B, 119, pp. 8613-8622 
504 |a Welke, K., Watanabe, H.C., Wolter, T., Gaus, M., Elstner, M., QM/MM simulations of vibrational spectra of bacteriorhodopsin and channelrhodopsin-2 (2013) Phys. Chem. Chem. Phys., 15, pp. 6651-6659 
504 |a Hofer, T.S., Pribil, A.B., Randolf, B.R., Rode, B.M., Structure and dynamics of solvated Sn(II) in aqueous solution: An ab initio QM/MM MD approach (2005) J. Am. Chem. Soc., 127, pp. 14231-14238 
504 |a Kritayakornupong, C., Plankensteiner, K., Rode, B.M., Structure and dynamics of the Cr(III) ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation (2004) J. Comput. Chem., 25, pp. 1576-1583 
504 |a Kritayakornupong, C., Plankensteiner, K., Rode, B.M., Structure and dynamics of the Cd2+ ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation (2003) J. Phys. Chem. A, 107, pp. 10330-10334 
504 |a Bochenkova, A., Firsov, D., Nemukhin, A., Hybrid DIM-based QM/MM approach applied to vibrational spectra and trapping site structures of HArF in solid argon (2005) Chem. Phys. Lett., 405, pp. 165-171 
504 |a Cui, Q., Karplus, M., Molecular properties from combined QM/MM methods. I. Analytical second derivative and vibrational calculations (2000) J. Chem. Phys., 112, pp. 1133-1149 
504 |a Rovira, C., Schulze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: A QM/MM density functional study (2001) Biophys. J., 81, pp. 435-445 
504 |a Chaban, G.M., Gerber, R.B., Anharmonic vibrational spectroscopy of the glycine-water complex: Calculations for ab initio, empirical, and hybrid quantum mechanics/molecular mechanics potentials (2001) J. Chem. Phys., 115, pp. 1340-1348 
504 |a Inada, Y., Loeffler, H.H., Rode, B.M., Librational, vibrational, and exchange motions of water molecules in aqueous Ni(II) solution: Classical and QM/MM molecular dynamics simulations (2002) Chem. Phys. Lett., 358, pp. 449-458 
504 |a Hayashi, S., Ohmine, I., Proton transfer in bacteriorhodopsin: Structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method (2000) J. Phys. Chem. B, 104, pp. 10678-10691 
504 |a Nonella, M., Boullais, C., Mioskowski, C., Nabedryk, E., Breton, J., Vibrational spectrum and torsional potential of 2-Methoxy-3-methyl-1,4-benzoquinone (1999) J. Phys. Chem. B, 103, pp. 6363-6370 
504 |a Klähn, M., Schlitter, J., Gerwert, K., Theoretical IR spectroscopy based on QM/MM calculations provides changes in charge distribution, bond lengths, and bond angles of the GTP ligand induced by the Ras-protein (2005) Biophys. J., 88, pp. 3829-3844 
504 |a González Lebrero, M.C., Bikiel, D.E., Elola, M.D., Estrin, D.A., Roitberg, A.E., Solvent-induced symmetry breaking of nitrate ion in aqueous clusters: A quantum-classical simulation study (2002) J. Chem. Phys., 117, pp. 2718-2725 
504 |a Tsai, J.-H.M., Harrison, J.G., Martin, J.C., Hamilton, T.P., Van Der Woerd, M., Jablonsky, M.J., Beckman, J.S., Role of conformation of peroxynitrite anion (ONOO-) with its stability and toxicity (1994) J. Am. Chem. Soc., 116, pp. 4115-4116 
504 |a Lo, W.-J., Lee, Y., Tsai, J.M., Tsai, H., Hamilton, T.P., Harrison, J.G., Beckman, J.S., Infrared absorption of cis and transalkalimetal peroxynitrites (MOONO, M = Li, Na, and K) in solid argon (1995) J. Chem. Phys., 103, pp. 4026-4034 
504 |a Bikiel, D.E., Di Salvo, F., González Lebrero, M.C., Doctorovich, F., Estrin, D.A., Solvation and structure of LiAlH4 in ethereal solvents (2005) Inorg. Chem., 44, pp. 5286-5292 
504 |a Guardia, C.M., González Lebrero, M.C., Bari, S.E., Estrin, D.A., QMMM investigation of the reaction products between nitroxyl and O2 in aqueous solution (2008) Chem. Phys. Lett., 463, pp. 112-116 
504 |a Tanzi, L., Ramondo, F., Guidoni, L., Vibrational spectra of water solutions of azoles from QM/MM calculations: Effects of solvation (2012) J. Phys. Chem. A, 116, pp. 10160-10171 
504 |a Ghysels, A., Woodcock, H.L., Larkin, J.D., Miller, B.T., Shao, Y., Kong, J., Neck, D.V., Brooks, B.R., Efficient calculation of QM/MM frequencies with the mobile block Hessian (2011) J. Chem. Theory Comput., 7, pp. 496-514 
504 |a Ghysels, A., Van Neck, D., Van Speybroeck, V., Verstraelen, T., Waroquier, M., Vibrational modes in partially optimized molecular systems (2007) J. Chem. Phys., 126 
504 |a Ghysels, A., Van Neck, D., Waroquier, M., Cartesian formulation of the Mobile Block Hessian approach to vibrational analysis in partially optimized systems (2007) J. Chem. Phys., 127 
504 |a Rippers, Y., Horch, M., Hildebrandt, P., Zebger, I., Mroginski, M.A., Revealing the absolute configuration of the CO and CN ligands at the active site of a [NiFe] hydrogenase (2012) ChemPhysChem, 13, pp. 3852-3856 
504 |a Lee, M.W., Meuwly, M., Molecular dynamics simulation of nitric Oxide in myoglobin (2012) J. Phys. Chem. B, 116, pp. 4154-4162 
504 |a Falvo, C., Daniault, L., Vieille, T., Kemlin, V., Lambry, J.-C., Meier, C., Vos, M.H., Joffre, M., Ultrafast dynamics of carboxy-hemoglobin: Two-dimensional infrared spectroscopy experiments and simulations (2015) J. Phys. Chem. Lett., 6, pp. 2216-2222 
504 |a Yan, Y.-A., Kuhn, O., Geometric correlations and infrared spectrum of adenine-uracil hydrogen bonds in CDCl3 solution (2010) Phys. Chem. Chem. Phys., 12, pp. 15695-15703 
504 |a Jeon, J., Yang, S., Choi, J.-H., Cho, M., Computational vibrational spectroscopy of peptides and proteins in one and two dimensions (2009) Acc. Chem. Res., 42, pp. 1280-1289 
504 |a Watanabe, H.C., Banno, M., Sakurai, M., An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: Incorporation of the quantum effect between solute and solvent (2016) Phys. Chem. Chem. Phys., 18, pp. 7318-7333 
504 |a Placzek, G., Intensität und polarisation der Ramanschen streustrahlung mehratomiger moleküle (1931) Eur. Phys. J. A, 70, pp. 84-103 
504 |a Schatz, G.C., Ratner, M.A., (2002) Quantum Mechanics in Chemistry, , Dover Publications: Mineola, NY 
504 |a Long, D.A., (2002) The Raman Effect, , John Wiley & Sons: Chichester, U.K 
504 |a Neugebauer, J., Reiher, M., Kind, C., Hess, B.A., Quantum chemical calculation of vibrational spectra of large molecules-Raman and IR spectra for Buckminsterfullerene (2002) J. Comput. Chem., 23, pp. 895-910 
504 |a Kramers, H.A., Heisenberg, W., Über die Streuung von Strahlung durch Atome (1925) Z. Phys., 31, pp. 681-708 
504 |a Dirac, P.A.M., The quantum theory of dispersion (1927) Proc. R. Soc. London, Ser. A, 114, pp. 710-728 
504 |a Behringer, J., Zur theorie des resonanz-Raman-effektes (1958) Z. Elektrochem., Ber. Bunsen-Ges. Phys. Chem., 62, pp. 906-914 
504 |a Atkins, P.W., Friedman, R.S., (2011) Molecular Quantum Mechanics, , Oxford University Press: Oxford, U.K 
504 |a Komornicki, A., McIver, J.W., An efficient ab initio method for computing infrared and Raman intensities: Application to ethylene (1979) J. Chem. Phys., 70, p. 2014 
504 |a Albrecht, A.C., On the theory of Raman intensities (1961) J. Chem. Phys., 34, p. 1476 
504 |a Tang, J., Albrecht, A.C., Studies in Raman intensity theory (1968) J. Chem. Phys., 49, p. 1144 
504 |a Frisch, M.J., Yamaguchi, Y., Gaw, J.F., Schaefer, H.F., Binkley, J.S., Analytic Raman intensities from molecular electronic wave functions (1986) J. Chem. Phys., 84, pp. 531-532 
504 |a Bacskay, G.B., Saebø, S., Taylor, P.R., On the calculation of dipole moment and polarizability derivatives by the analytical energy gradient method: Application to the formaldehyde molecule (1984) Chem. Phys., 90, pp. 215-224 
504 |a Peticolas, W.L., Rush, T., Ab initio calculations of the ultraviolet resonance Raman spectra of uracil (1995) J. Comput. Chem., 16, pp. 1261-1270 
504 |a Rush, T.I., Peticolas, W.L., Ab initio transform calculation of resonance Raman spectra of uracil, 1-methyluracil, and 5-methyluracil (1995) J. Phys. Chem., 99, pp. 14647-14658 
504 |a Mroginski, M.-A., Kneip, C., Hildebrandt, P., Mark, F., Excited state geometry calculations and the resonance Raman spectrum of hexamethylpyrromethene (2003) J. Mol. Struct., 661-662, pp. 611-624 
504 |a Neugebauer, J., Hess, B.A., Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory (2004) J. Chem. Phys., 120, pp. 11564-11577 
504 |a Guthmuller, J., Champagne, B., Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents (2007) J. Chem. Phys., 127 
504 |a Heller, E.J., Sundberg, R., Tannor, D., Simple aspects of Raman scattering (1982) J. Phys. Chem., 86, pp. 1822-1833 
504 |a Lee, S., Heller, E.J., Exact time-dependent wave packet propagation: Application to the photodissociation of methyl iodide (1982) J. Chem. Phys., 76, pp. 3035-3044 
504 |a Heller, E.J., The semiclassical way to molecular spectroscopy (1981) Acc. Chem. Res., 14, pp. 368-375 
504 |a Lee, S.-Y., Heller, E.J., Time-dependent theory of Raman scattering (1979) J. Chem. Phys., 71, p. 4777 
504 |a Guthmuller, J., Comparison of simplified sum-over-state expressions to calculate resonance Raman intensities including Franck-Condon and Herzberg-Teller effects (2016) J. Chem. Phys., 144 
504 |a Neugebauer, J., Baerends, E.J., Efremov, E.V., Ariese, F., Gooijer, C., Combined theoretical and experimental deep-UV resonance Raman studies of substituted pyrenes (2005) J. Phys. Chem. A, 109, pp. 2100-2106 
504 |a Thomas, M., Latorre, F., Marquetand, P., Resonance Raman spectra of ortho-nitrophenol calculated by real-time time-dependent density functional theory (2013) J. Chem. Phys., 138 
504 |a Jensen, L., Zhao, L.L., Autschbach, J., Schatz, G.C., Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives (2005) J. Chem. Phys., 123 
504 |a Jensen, L., Autschbach, J., Schatz, G.C., Finite lifetime effects on the polarizability within time-dependent density-functional theory (2005) J. Chem. Phys., 122 
504 |a Kane, K.A., Jensen, L., Calculation of absolute resonance Raman intensities: Vibronic theory vs short-time approximation (2010) J. Phys. Chem. C, 114, pp. 5540-5546 
504 |a Baiardi, A., Bloino, J., Barone, V., A general time-dependent route to resonance-Raman spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects (2014) J. Chem. Phys., 141 
504 |a Baiardi, A., Bloino, J., Barone, V., Accurate Simulation of resonance-Raman spectra of flexible molecules: An internal coordinates approach (2015) J. Chem. Theory Comput., 11, pp. 3267-3280 
504 |a Baiardi, A., Bloino, J., Barone, V., General formulation of vibronic spectroscopy in internal coordinates (2016) J. Chem. Phys., 144 
504 |a Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations (2001) J. Chem. Phys., 115, pp. 10323-10334 
504 |a Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Nonlinear response theory with relaxation: The first-order hyperpolarizability (2005) J. Chem. Phys., 123 
504 |a Mroginski, M.A., Mark, F., Thiel, W., Hildebrandt, P., Quantum mechanics/molecular mechanics calculation of the Raman spectra of the phycocyanobilin chromophore in alpha-C-phycocyanin (2007) Biophys. J., 93, pp. 1885-1894 
504 |a Mroginski, M.A., Murgida, D.H., Hildebrandt, P., The chromophore structural changes during the photocycle of phytochrome: A combined resonance Raman and quantum chemical approach (2007) Acc. Chem. Res., 40, pp. 258-266 
504 |a Mroginski, M.A., Von Stetten, D., Escobar, F.V., Strauss, H.M., Kaminski, S., Scheerer, P., Günther, M., Bongards, C., Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: Reconciling structural and spectroscopic data by QM/MM calculations (2009) Biophys. J., 96, pp. 4153-4163 
504 |a Mroginski, M.A., Kaminski, S., Hildebrandt, P., Raman spectra of the phycoviolobilin cofactor in phycoerythrocyanin calculated by QM/MM methods (2010) ChemPhysChem, 11, pp. 1265-1274 
504 |a Horch, M., Schoknecht, J., Mroginski, M.A., Lenz, O., Hildebrandt, P., Zebger, I., Resonance Raman spectroscopy on [NiFe] hydrogenase provides structural insights into catalytic intermediates and reactions (2014) J. Am. Chem. Soc., 136, pp. 9870-9873 
504 |a Siebert, E., Rippers, Y., Frielingsdorf, S., Fritsch, J., Schmidt, A., Kalms, J., Katz, S., Paasche, L., Resonance Raman spectroscopic analysis of the [NiFe] active site and the proximal [4Fe-3S] cluster of an O2-tolerant membrane-bound hydrogenase in the crystalline state (2015) J. Phys. Chem. B, 119, pp. 13785-13796 
504 |a Sezer, M., Woelke, A.L., Knapp, E.W., Schlesinger, R., Mroginski, M.A., Weidinger, I.M., Redox induced protonation of heme propionates in cytochrome c oxidase: Insights from surface enhanced resonance Raman spectroscopy and QM/MM calculations (2017) Biochim. Biophys. Acta, Bioenerg., 1858, pp. 103-108 
504 |a Kubota, K., Shingae, T., Foster, N.D., Kumauchi, M., Hoff, W.D., Unno, M., Active site structure of photoactive yellow protein with a locked chromophore analogue revealed by near-infrared Raman optical activity (2013) J. Phys. Chem. Lett., 4, pp. 3031-3038 
504 |a Malolepsza, E., Witek, H.A., Morokuma, K., Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method (2005) Chem. Phys. Lett., 412, pp. 237-243 
504 |a Frenkel, J., On the transformation of light into heat (1931) Phys. Rev., 37, pp. 1276-1294 
504 |a Abramavicius, D., Palmieri, B., Voronine, D.V., Sanda, F., Mukamel, S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; Quasiparticle versus supermolecule perspectives (2009) Chem. Rev., 109, pp. 2350-2408 
504 |a Fleischmann, M., Hendra, P.J., McQuillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode (1974) Chem. Phys. Lett., 26, pp. 163-166 
504 |a Jeanmaire, D.L., Van Duyne, R.P., Surface raman spectroelectrochemistryPart I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode (1977) J. Electroanal. Chem. Interfacial Electrochem., 84, pp. 1-20 
504 |a Nie, S., Emory, S.R., Probing single molecules and single nanoparticles by surface enhanced raman scattering (1997) Science, 275, pp. 1102-1106 
504 |a Kneipp, K., Wang, Y., Kneipp, H., Itzkan, I., Dasari, R., Feld, M., Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering (1996) Phys. Rev. Lett., 76, pp. 2444-2447 
504 |a Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Single molecule detection using surface-enhanced Raman scattering (SERS) (1997) Phys. Rev. Lett., 78, pp. 1667-1670 
504 |a Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J., Surface-enhanced Raman spectroscopy (SERS) Progress and trends (2012) Anal. Bioanal. Chem., 403, pp. 27-54 
504 |a Zrimsek, A.B., Chiang, N., Mattei, M., Zaleski, S., McAnally, M.O., Chapman, C.T., Henry, A.-I., Van Duyne, R.P., Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy (2017) Chem. Rev., 117, pp. 7583-7613 
504 |a Pozzi, F., Zaleski, S., Casadio, F., Leona, M., Lombardi, J., Van Duyne, R., (2016) Nanoscience and Cultural Heritage, pp. 161-204. , Atlantis Press: Paris 
504 |a Henry, A.I., Sharma, B., Cardinal, M.F., Kurouski, D., Van Duyne, R.P., Surface-enhanced Raman spectroscopy biosensing: In vivo diagnostics and multimodal imaging (2016) Anal. Chem., 88, pp. 6638-6647 
504 |a Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals (1978) J. Chem. Phys., 69, p. 4159 
504 |a Moskovits, M., Enhanced Raman scattering by molecules adsorbed on electrodes-a theoretical model (1979) Solid State Commun., 32, pp. 59-62 
504 |a Gersten, J., Nitzan, A., Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces (1980) J. Chem. Phys., 73, pp. 3023-3037 
504 |a Aravind, P., Metiu, H., The enhancement of raman and fluorescent intensity by small surface roughness. Changes in dipole emission (1980) Chem. Phys. Lett., 74, pp. 301-305 
504 |a Kerker, M., Wang, D.-S., Chew, H., Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles (1980) Appl. Opt., 19, p. 3373 
504 |a Moskovits, M., Surface-enhanced spectroscopy (1985) Rev. Mod. Phys., 57, pp. 783-826 
504 |a Shalaev, V.M., Stockman, M.I., Fractals: Optical susceptibility and giant raman scattering (1988) Z. Phys. D: At., Mol. Clusters, 10, pp. 71-79 
504 |a Kottmann, J., Martin, O., Plasmon resonant coupling in metallic nanowires (2001) Opt. Express, 8, pp. 655-663 
504 |a Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment (2003) J. Phys. Chem. B, 107, pp. 668-677 
504 |a Prodan, E., Radloff, C., Halas, N.J., Norlander, P., A hybridization model for the plasmon response of complex nanostructures (2003) Science, 302, pp. 419-422 
504 |a Ball, P., Martin Fleischmann (1927-2012) (2012) Nature, 489, p. 34 
504 |a Moskovits, M., Persistent misconceptions regarding SERS (2013) Phys. Chem. Chem. Phys., 15, p. 5301 
504 |a Otto, A., Billmann, J., Eickmans, J., Ertürk, U., Pettenkofer, C., The "adatom model" of SERS (Surface Enhanced Raman Scattering): The present status (1984) Surf. Sci., 138, pp. 319-338 
504 |a Adrian, F.J., Charge transfer effects in surface-enhanced Raman scattering (1982) J. Chem. Phys., 77, p. 5302 
504 |a Michaels, A.M., Nirmal, M., Brus, L.E., Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals (1999) J. Am. Chem. Soc., 121, pp. 9932-9939 
504 |a Tripp, R.A., Dluhy, R.A., Zhao, Y., Novel nanostructures for SERS biosensing (2008) Nano Today, 3, pp. 31-37 
504 |a Hu, Z., Chulhai, D.V., Jensen, L., Simulating surface-enhanced hyper-Raman scattering using atomistic electrodynamics-quantum mechanical models (2016) J. Chem. Theory Comput., 12, pp. 5968-5978 
504 |a Camden, J.P., Dieringer, J.A., Wang, Y., Masiello, D.J., Marks, L.D., Schatz, G.C., Van Duyne, R.P., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots (2008) J. Am. Chem. Soc., 130, pp. 12616-12617 
504 |a Galarreta, B.C., Harté, E., Marquestaut, N., Norton, P.R., Lagugné-Labarthet, F., Plasmonic properties of Fischer's patterns: Polarization effects (2010) Phys. Chem. Chem. Phys., 12, pp. 6810-6816 
504 |a Mie, G., Beiträge zur optik trüber medien, speziell kolloidaler metallösungen (1908) Ann. Phys., 330, pp. 377-445 
504 |a Kerker, M., (1969) The Scattering of Light and Other Electromagnetic Radiation, 7, p. 666. , Academic Press: London 
504 |a Xu, H., Wang, X.-H., Persson, M.P., Xu, H.Q., Käll, M., Johansson, P., Unified treatment of fluorescence and raman scattering processes near metal surfaces (2004) Phys. Rev. Lett., 93 
504 |a Käll, M., Xu, H., Johansson, P., Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy (2005) J. Raman Spectrosc., 36, pp. 510-514 
504 |a Johansson, P., Xu, H., Käll, M., Surface-enhanced Raman scattering and fluorescence near metal nanoparticles (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72 
504 |a Wriedt, T., Mie theory: A review (2012) Springer Ser. Opt. Sci., 169, pp. 53-71 
504 |a Purcell, E.M., Pennypacker, C.R., Scattering and absorption of light by nonspherical dielectric grains (1973) Astrophys. J., 186, p. 705 
504 |a Goodman, J.J., Draine, B.T., Flatau, P.J., Application of fast-Fourier-transform techniques to the discrete-dipole approximation (1991) Opt. Lett., 16, pp. 1198-1200 
504 |a Sherry, L.J., Jin, R., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P., Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms (2006) Nano Lett., 6, pp. 2060-2065 
504 |a Qin, L., Zou, S., Xue, C., Atkinson, A., Schatz, G.C., Mirkin, C.A., Designing, fabricating, and imaging Raman hot spots (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 13300-13303 
504 |a Loke, V.L.Y., Huda, G.M., Donev, E.U., Schmidt, V., Hastings, J.T., Mengüç, M.P., Wriedt, T., Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres (2014) Appl. Phys. B: Lasers Opt., 115, pp. 237-246 
504 |a Amendola, V., Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method (2016) Phys. Chem. Chem. Phys., 18, pp. 2230-2241 
504 |a Wei, J.J., Yang, P., Portales, H., Albouy, P.A., Pileni, M.P., Collective surface plasmon resonances in two-dimensional assemblies of Au and Ag nanocrystals: Experiments and discrete dipole approximation simulation (2016) J. Phys. Chem. C, 120, pp. 13732-13738 
504 |a Yee, K.S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media (1966) IEEE Trans. Antennas Propag., 14, pp. 302-307 
504 |a Lopata, K., Neuhauser, D., Multiscale Maxwell-Schrödinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics (2009) J. Chem. Phys., 130 
504 |a Zeng, Z., Liu, Y., Wei, J., Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications (2016) TrAC, Trends Anal. Chem., 75, pp. 162-173 
504 |a Jin, J., (2002) The Finite Element Method in Electromagnetics, p. 846. , John Wiley & Sons: Hoboken, NJ 
504 |a Savage, K.J., Hawkeye, M.M., Esteban, R., Borisov, A.G., Aizpurua, J., Baumberg, J.J., Revealing the quantum regime in tunnelling plasmonics (2012) Nature, 491, pp. 574-577 
504 |a Scholl, J.A., García-Etxarri, A., Koh, A.L., Dionne, J.A., Observation of quantum tunneling between two plasmonic nanoparticles (2013) Nano Lett., 13, pp. 564-569 
504 |a Marinica, D.C., Kazansky, A.K., Nordlander, P., Aizpurua, J., Borisov, A.G., Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer (2012) Nano Lett., 12, pp. 1333-1339 
504 |a Zhu, W., Esteban, R., Borisov, A.G., Baumberg, J.J., Nordlander, P., Lezec, H.J., Aizpurua, J., Crozier, K.B., Quantum mechanical effects in plasmonic structures with subnanometre gaps (2016) Nat. Commun., 7, p. 11495 
504 |a Nordlander, P., Molecular tuning of quantum plasmon resonances (2014) Science, 343, pp. 1444-1445 
504 |a Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J., Bridging quantum and classical plasmonics with a quantum-corrected model (2012) Nat. Commun., 3, p. 825 
504 |a Marinica, D.C., Zapata, M., Nordlander, P., Kazansky, A.K., Echenique, P.M., Aizpurua, J., Borisov, A.G., Active quantum plasmonics (2015) Sci. Adv., 1, p. e1501095 
504 |a Marinica, D.-C., Aizpurua, J., Borisov, A.G., Quantum effects in the plasmon response of bimetallic core-shell nanostructures (2016) Opt. Express, 24, p. 23941 
504 |a Tan, S.F., Wu, L., Yang, J.K.W., Bai, P., Bosman, M., Nijhuis, C.A., Quantum plasmon resonances controlled by molecular tunnel junctions (2014) Science, 343, pp. 1496-1499 
504 |a Wu, L., Duan, H., Bai, P., Bosman, M., Yang, J.K.W., Li, E., Fowler - Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles (2013) ACS Nano, 7, pp. 707-716 
504 |a Zhang, P., Feist, J., Rubio, A., García-González, P., García-Vidal, F.J., Ab initio nanoplasmonics: The impact of atomic structure (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 90 
504 |a Xiang, H., Zhang, M., Zhang, X., Lu, G., Understanding quantum plasmonics from time-dependent orbital-free density functional theory (2016) J. Phys. Chem. C, 120, pp. 14330-14336 
504 |a Gieseking, R.L., Ratner, M.A., Schatz, G.C., Semiempirical modeling of Ag nanoclusters: New parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation (2016) J. Phys. Chem. A, 120, pp. 4542-4549 
504 |a Morton, S.M., Silverstein, D.W., Jensen, L., Theoretical studies of plasmonics using electronic structure methods (2011) Chem. Rev., 111, pp. 3962-3994 
504 |a Corni, S., Tomasi, J., Enhanced response properties of a chromophore physisorbed on a metal particle (2001) J. Chem. Phys., 114, pp. 3739-3751 
504 |a Corni, S., Tomasi, J., Theoretical evaluation of Raman spectra and enhancement factors for a molecule adsorbed on a complex-shaped metal particle (2001) Chem. Phys. Lett., 342, pp. 135-140 
504 |a Corni, S., Tomasi, J., Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study (2002) J. Chem. Phys., 116, pp. 1156-1164 
504 |a Masiello, D.J., Schatz, G.C., Many-body theory of surface-enhanced Raman scattering (2008) Phys. Rev. A: At., Mol., Opt. Phys., 78 
504 |a Morton, S.M., Jensen, L., A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles (2010) J. Chem. Phys., 133 
504 |a Payton, J.L., Morton, S.M., Moore, J.E., Jensen, L., A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy (2012) J. Chem. Phys., 136 
504 |a Payton, J.L., Morton, S.M., Moore, J.E., Jensen, L., A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering (2014) Acc. Chem. Res., 47, pp. 88-99 
504 |a Moore, J.E., Morton, S.M., Jensen, L., Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS (2012) J. Phys. Chem. Lett., 3, pp. 2470-2475 
504 |a Rinaldi, J.M., Morton, S.M., Jensen, L., A discrete interaction model/quantum mechanical method for simulating nonlinear optical properties of molecules near metal surfaces (2013) Mol. Phys., 111, pp. 1322-1331 
504 |a Chulhai, D.V., Jensen, L., Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models (2014) J. Phys. Chem. A, 118, pp. 9069-9079 
504 |a Arcisauskaite, V., Kongsted, J., Hansen, T., Mikkelsen, K.V., Charge transfer excitation energies in pyridine-silver complexes studied by a QM/MM method (2009) Chem. Phys. Lett., 470, pp. 285-288 
504 |a Rinkevicius, Z., Li, X., Sandberg, J.A.R., Mikkelsen, K.V., gren, H., A hybrid density functional theory/molecular mechanics approach for linear response properties in heterogeneous environments (2014) J. Chem. Theory Comput., 10, pp. 989-1003 
504 |a Rinkevicius, Z., Li, X., Sandberg, J.A., gren, H., Non-linear optical properties of molecules in heterogeneous environments: A quadratic density functional/molecular mechanics response theory (2014) Phys. Chem. Chem. Phys., 16, pp. 8981-8989 
504 |a Rinkevicius, Z., Sandberg, J.A.R., Li, X., Linares, M., Norman, P., gren, H., Hybrid complex polarization propagator/molecular mechanics method for heterogeneous environments (2016) J. Chem. Theory Comput., 12, pp. 2661-2667 
504 |a Li, X., Rinkevicius, Z., gren, H., Two-photon absorption of metal-assisted chromophores (2014) J. Chem. Theory Comput., 10, pp. 5630-5639 
504 |a Li, X., Rinkevicius, Z., gren, H., Electronic circular dichroism of surface-adsorbed molecules by means of quantum mechanics capacitance molecular mechanics (2014) J. Phys. Chem. C, 118, pp. 5833-5840 
504 |a Chen, H., Blaber, M.G., Standridge, S.D., Demarco, E.J., Hupp, J.T., Ratner, M.A., Schatz, G.C., Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell (2012) J. Phys. Chem. C, 116, pp. 10215-10221 
504 |a Mullin, J., Valley, N., Blaber, M.G., Schatz, G.C., Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie Theory) methods for calculating surface enhanced raman and hyper-raman spectra (2012) J. Phys. Chem. A, 116, pp. 9574-9581 
504 |a Mullin, J., Schatz, G.C., Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra (2012) J. Phys. Chem. A, 116, pp. 1931-1938 
504 |a Chulhai, D.V., Chen, X., Jensen, L., Simulating ensemble-averaged surface-enhanced Raman scattering (2016) J. Phys. Chem. C, 120, pp. 20833-20842 
504 |a Pipolo, S., Corni, S., Real-time description of the electronic dynamics for a molecule close to a plasmonic nanoparticle (2016) J. Phys. Chem. C, 120, pp. 28774-28781 
504 |a Raghunathan, S., Nest, M., The lack of resonance problem in coherent control with real-time time-dependent density functional theory (2012) J. Chem. Theory Comput., 8, pp. 806-809 
504 |a Raghunathan, S., Nest, M., Limits of the creation of electronic wave packets using time-dependent density functional theory (2012) J. Phys. Chem. A, 116, pp. 8490-8493 
504 |a Habenicht, B.F., Tani, N.P., Provorse, M.R., Isborn, C.M., Two-electron Rabi oscillations in real-time time-dependent density-functional theory (2014) J. Chem. Phys., 141 
504 |a Duan, S., Tian, G., Luo, Y., Theory for modeling of high resolution resonant and nonresonant Raman images (2016) J. Chem. Theory Comput., 12, pp. 4986-4995 
504 |a Neal, S., Nip, A.M., Zhang, H., Wiashart, D.S., Rapid and accurate calculation of protein H-1 C-13 and N-15 chemical shifts (2003) J. Biomol. NMR, 26, pp. 215-240 
504 |a Kohlhoff, K., Robustelli, P., Cavalli, A., Salvatella, X., Vendruscolo, M., Fast and accurate predictions of protein NMR chemical shifts from interatomic distances (2009) J. Am. Chem. Soc., 131, pp. 13894-13895 
504 |a Shen, Y., Bax, A., Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology (2007) J. Biomol. NMR, 38, pp. 289-302 
504 |a Shen, Y., Bax, A., SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network (2010) J. Biomol. NMR, 48, pp. 13-22 
504 |a Sumowski, C.V., Hanni, M., Schweizer, S., Ochsenfeld, C., Sensitivity of ab initio vs empirical methods in computing structural effects on NMR chemical shifts for the example of peptides (2014) J. Chem. Theory Comput., 10, pp. 122-133 
504 |a Helgaker, T., Jaszuński, M., Ruud, K., Ab initio methods for the calculation of NMR shielding and indirect spinspin coupling constants (1999) Chem. Rev., 99, pp. 293-352 
504 |a Sebastiani, D., Parrinello, M., A new ab-initio approach for NMR chemical shifts in periodic systems (2001) J. Phys. Chem. A, 105, pp. 1951-1958 
504 |a Putrino, A., Sebastiani, D., Parrinello, M., Generalized variational density functional perturbation theory (2000) J. Chem. Phys., 113, pp. 7102-7109 
504 |a London, F., Quantum theory of interatomic currents in aromatic compounds.Thorie quantique des courants interatomiques dans les combinaisons aromatiques (1937) J. Phys. Radium, 8, pp. 397-409 
504 |a Ditchfield, R., Self-consistent perturbation theory of diamagnetism (1974) Mol. Phys., 27, pp. 789-807 
504 |a Wolinski, K., Hinton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations (1990) J. Am. Chem. Soc., 112, pp. 8251-8260 
504 |a Kutzelnigg, W., Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities (1980) Isr. J. Chem., 19, pp. 193-200 
504 |a Schindler, M., Kutzelnigg, W., Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules (1982) J. Chem. Phys., 76, pp. 1919-1933 
504 |a Fukui, H., Theory and calculation of nuclear shielding constants (1997) Prog. Nucl. Magn. Reson. Spectrosc., 31, pp. 317-342 
504 |a Gauss, J., Stanton, J., Coupled-cluster calculatioons of nuclear magnetic chemical shifts (1995) J. Chem. Phys., 103, pp. 3561-3577 
504 |a De Dios, A., Pearson, J., Oldfield, E., Secondary and tertiary structural effects on protein NMR chemical shifts: An ab initio approach (1993) Science, 260, pp. 1491-1496 
504 |a Manzoni, V., Lyra, M.L., Coutinho, K., Canuto, S., Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: Study of the optical and magnetic properties of diazines in water (2011) J. Chem. Phys., 135 
504 |a Zhu, T., Zhang, J.Z.H., He, X., Automated fragmentation QM/MM calculation of amide proton chemical shifts in proteins with explicit solvent model (2013) J. Chem. Theory Comput., 9, pp. 2104-2114 
504 |a Helgaker, T., Jaszuński, M., Pecul, M., The quantum-chemical calculation of NMR indirect spinspin coupling constants (2008) Prog. Nucl. Magn. Reson. Spectrosc., 53, pp. 249-268 
504 |a Gester, R.M., Georg, H.C., Canuto, S., Caputo, M.C., Provasi, P.F., NMR chemical shielding and spin-spin coupling constants of liquid NH3: A systematic investigation using the sequential QM/MM method (2009) J. Phys. Chem. A, 113, pp. 14936-14942 
504 |a Wang, B., He, X., Merz, K.M., Quantum mechanical study of vicinal J spinspin coupling constants for the protein backbone (2013) J. Chem. Theory Comput., 9, pp. 4653-4659 
504 |a Flaig, D., Beer, M., Ochsenfeld, C., Convergence of electronic structure with the size of the QM region: Example of QM/MM NMR shieldings (2012) J. Chem. Theory Comput., 8, pp. 2260-2271 
504 |a Steinmann, C., Olsen, J.M.H., Kongsted, J., Nuclear magnetic shielding constants from quantum mechanical/molecular mechanical calculations using polarizable embedding: Role of the embedding potential (2014) J. Chem. Theory Comput., 10, pp. 981-988 
504 |a Sebastiani, D., Rothlisberger, U., Nuclear magnetic resonance chemical shifts from hybrid DFT QM/MM calculations (2004) J. Phys. Chem. B, 108, pp. 2807-2815 
504 |a Komin, S., Gossens, C., Tavernelli, I., Rothlisberger, U., Sebastiani, D., NMR solvent shifts of adenine in aqueous solution from hybrid QM/MM molecular dynamics simulations (2007) J. Phys. Chem. B, 111, pp. 5225-5232 
504 |a Bagno, A., D'Amico, F., Saielli, G., Computing the NMR spectrum of a bulk ionic liquid phase by QM/MM methods (2006) J. Phys. Chem. B, 110, pp. 23004-23006 
504 |a Pedone, A., Pavone, M., Menziani, M.C., Barone, V., Accurate first-principle prediction of 29Si and 17O NMR parameters in SiO2 polymorphs: The cases of zeolites sigma-2 and ferrierite (2008) J. Chem. Theory Comput., 4, pp. 2130-2140 
504 |a Fang, C., Xie, Y., Johnston, M.R., Ruan, Y., Tang, B.Z., Peng, Q., Tang, Y., SERS and NMR studies of typical aggregation-induced emission molecules (2015) J. Phys. Chem. A, 119, pp. 8049-8054 
504 |a Sundholm, D., Rauhalahti, M., Özcan, N., Mera-Adasme, R., Kussmann, J., Luenser, A., Ochsenfeld, C., Nuclear magnetic shieldings of stacked aromatic and antiaromatic molecules (2017) J. Chem. Theory Comput., 13, pp. 1952-1962 
504 |a Gascón, J.A., Sproviero, E.M., Batista, V.S., QM/MM study of the NMR spectroscopy of the retinyl chromophore in visual rhodopsin (2005) J. Chem. Theory Comput., 1, pp. 674-685 
504 |a Gascón, J.A., Leung, S.S.F., Batista, E.R., Batista, V.S., A self-consistent space-domain decomposition method for QM/MM computations of protein electrostatic potentials (2006) J. Chem. Theory Comput., 2, pp. 175-186 
504 |a Askerka, M., Ho, J., Batista, E., Gascón, J., Batista, V., The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes (2016) Methods Enzymol., 577, pp. 443-481 
504 |a Ho, J., Newcomer, M.B., Ragain, C.M., Gascón, J.A., Batista, E.R., Loria, J.P., Batista, V.S., MoD-QM/MM structural refinement method: Characterization of hydrogen bonding in the Oxytricha nova G-quadruplex (2014) J. Chem. Theory Comput., 10, pp. 5125-5135 
504 |a Wang, B., Brothers, E.N., Van Der Vaart, A., Merz, K.M., Jr., Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: A divide-and-conquer approach (2004) J. Chem. Phys., 120, pp. 11392-11400 
504 |a Wang, B., Merz, K.M., A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules (2006) J. Chem. Theory Comput., 2, pp. 209-215 
504 |a He, X., Wang, B., Merz, K.M., Jr., Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach (2009) J. Phys. Chem. B, 113, pp. 10380-10388 
504 |a Zhang, W., Gascón, J., QM/MM investigation of structure and spectroscopic properties of a vanadium containing peroxidase (2008) J. Inorg. Biochem., 102, pp. 1684-1690 
504 |a Pauwels, E., Claeys, J., Martins, D., Waroquier, M., Bifulco, G., Van Speybroeck, A., Madder, V., Accurate prediction of 1H chemical shifts in interstrand cross-linked DNA (2013) RSC Adv., 3, pp. 3925-3938 
504 |a Saito, K., Ishikita, H., H atom positions and nuclear magnetic resonance chemical shifts of short H bonds in photoactive yellow protein (2012) Biochemistry, 51, pp. 1171-1177 
504 |a Lancaster, K.M., Zaballa, M.E., Sproules, S., Sundararajan, M., Debeer, S., Richards, J.H., Vila, A.J., Gray, H.B., Outer-sphere contributions to the electronic structure of type zero copper proteins (2012) J. Am. Chem. Soc., 134, pp. 8241-8253 
504 |a Fritz, M., Quinn, C.M., Wang, M., Hou, G., Lu, X., Koharudin, L.M., Polenova, T., Gronenborn, A.M., Toward closing the gap: Quantum mechanical calculations and experimentally measured chemical shifts of a microcrystalline lectin (2017) J. Phys. Chem. B, 121, pp. 3574-3585 
504 |a Dickson, D.P., Berry, F.J., (1986) Mossbauer Spectroscopy, , Cambridge University Press: Cambridge, U.K 
504 |a Neese, F., Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory (2001) J. Chem. Phys., 115, pp. 11080-11096 
504 |a Neese, F., Metal and ligand hyperfine couplings in transition metal complexes: The effect of spin-orbit coupling as studied by coupled perturbed Kohn-Sham theory (2003) J. Chem. Phys., 118, pp. 3939-3948 
504 |a Neese, F., Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations (2005) J. Chem. Phys., 122 
504 |a Moon, S., Patchkovskii, S., Salahub, D.R., QM/MM calculations of EPR hyperfine coupling constants in blue copper proteins (2003) J. Mol. Struct.: THEOCHEM, 632, pp. 287-295 
504 |a Schöneboom, J.C., Neese, F., Thiel, W., Toward identification of the compound i reactive intermediate in cytochrome P450 chemistry: A QM/MM study of its EPR and Mössbauer parameters (2005) J. Am. Chem. Soc., 127, pp. 5840-5853 
504 |a Sinnecker, S., Neese, F., QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study (2006) J. Comput. Chem., 27, pp. 1463-1475 
504 |a Porro, C.S., Kumar, D., Devisser, S.P., Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: Search for an Fe(I) oxidation state (2009) Phys. Chem. Chem. Phys., 11, pp. 10219-10226 
504 |a Radoul, M., Sundararajan, M., Potapov, A., Riplinger, C., Neese, F., Goldfarb, D., Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations (2010) Phys. Chem. Chem. Phys., 12, pp. 7276-7289 
504 |a Sundararajan, M., Neese, F., Detailed QM/MM study of the electron paramagnetic resonance parameters of nitrosyl myoglobin (2012) J. Chem. Theory Comput., 8, pp. 563-574 
504 |a Bernini, C., Pogni, R., Ruiz-Duenas, F.J., Martínez, A.T., Basosi, R., Sinicropi, A., EPR parameters of amino acid radicals in P. Eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level (2011) Phys. Chem. Chem. Phys., 13, pp. 5078-5098 
504 |a Herbert, J., Zhang, X., Morrison, A., Liu, J., Beyond time-dependent density functional theory using only single excitations: Methods for computational studies of excited states in complex systems (2016) Acc. Chem. Res., 49, pp. 931-941 
504 |a Podryabinkin, E., Shapeev, A., Active learning of linearly parametrized interatomic potentials (2017) Comput. Mater. Sci., 140, pp. 171-180 
504 |a Csanyi, G., Albaret, T., Payne, M., De Vita, A., Learn on the fly: A hybrid classical and quantum-mechanical molecular dynamics simulation (2004) Phys. Rev. Lett., 93 
504 |a Kermode, J.R., Albaret, T., Sherman, D., Bernstein, N., Gumbsch, P., Payne, M.C., Csányi, G., De Vita, A., Low-speed fracture instabilities in a brittle crystal (2008) Nature, 455, pp. 1224-1227 
504 |a Sinitskiy, A.V., Voth, G.A., (2017) Quantum Mechanics/Coarse-Grained Molecular Mechanics (QM/CG-MM), , https://arxiv.org/abs/1709.09771, arXiv:1709.09771 [physics.chem-ph]. arXiv.org e-Print archive 
504 |a Shen, L., Yang, W., Quantum mechanics/molecular mechanics method combined with hybrid all-atom and coarse-grained model: Theory and application on redox potential calculations (2016) J. Chem. Theory Comput., 12, pp. 2017-2027 
504 |a Barone, V., The virtual multifrequency spectrometer: A new paradigm for spectroscopy (2016) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 6, pp. 86-110 
520 3 |a The applications of multiscale quantum-classical (QM-MM) approaches have shown an extraordinary expansion and diversification in the last couple of decades. A great proportion of these efforts have been devoted to interpreting and reproducing spectroscopic experiments in a variety of complex environments such as solutions, interfaces, and biological systems. Today, QM-MM-based computational spectroscopy methods constitute accomplished tools with refined predictive power. The present review summarizes the advances that have been made in QM-MM approaches to UV-visible, Raman, IR, NMR, electron paramagnetic resonance, and Mössbauer spectroscopies, providing in every case an introductory discussion of the corresponding methodological background. A representative number of applications are presented to illustrate the historical evolution and the state of the art of this field, highlighting the advantages and limitations of the available methodologies. Finally, we present our view of the perspectives and open challenges in the field. © 2018 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020130100097BA 
536 |a Detalles de la financiación: PICT 2015-0672, PICT 2015-2761, PICT 2014-1022 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 11220150100303CO 
536 |a Detalles de la financiación: Mariano C. Gonzaĺ ez Lebrero received his degree in Chemistry in 2001 from the School of Sciences of the University of Buenos Aires and a doctoral degree from the same university in 2006. He is currently a Professor in the Inorganic, Analytical and Physical Chemistry Department of the School of Sciences of the University of Buenos Aires and a researcher at the Institute of Physical Chemistry of Materials, Environment and Energy (INQUIMAE) of the National Research Council of Argentina (CONICET). He is the leader of the LIO Project, a DFT and RT-TDDFT code for highly efficient QM− MM simulations using GPUs. 
536 |a Detalles de la financiación: This research was supported by grants from the Universidad de Buenos Aires (UBACYT 20020130100097BA) and Agencia Nacional de Promocioń Cientifí ca y Tecnologicá (PICT 2015-0672, PICT 2014-1022, and PICT 2015-2761) and CONICET Grant 11220150100303CO. N.O.F., U.N.M., and F.R. gratefully acknowledge CONICET for doctoral fellowships. We acknowledge Amendra Fernando and Leila Morzan for their artistic contributions. 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II C1428EHA, Buenos Aires, Argentina 
690 1 0 |a BIOLOGY 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE 
690 1 0 |a SPECTROSCOPIC ANALYSIS 
690 1 0 |a COMPLEX ENVIRONMENTS 
690 1 0 |a COMPUTATIONAL SPECTROSCOPY 
690 1 0 |a HISTORICAL EVOLUTIONS 
690 1 0 |a MULTI-SCALE 
690 1 0 |a PREDICTIVE POWER 
690 1 0 |a QUANTUM-CLASSICAL 
690 1 0 |a SSBAUER SPECTROSCOPIES 
690 1 0 |a STATE OF THE ART 
690 1 0 |a PARAMAGNETIC RESONANCE 
700 1 |a Alonso De Armiño, D.J. 
700 1 |a Foglia, N.O. 
700 1 |a Ramírez, F. 
700 1 |a González Lebrero, M.C. 
700 1 |a Scherlis, D.A. 
700 1 |a Estrin, D.A. 
773 0 |d American Chemical Society, 2018  |g v. 118  |h pp. 4071-4113  |k n. 7  |p Chem. Rev.  |x 00092665  |w (AR-BaUEN)CENRE-7  |t Chemical Reviews 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045202559&doi=10.1021%2facs.chemrev.8b00026&partnerID=40&md5=4fdc9e451a30c5779d824a90710288f3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.chemrev.8b00026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00092665_v118_n7_p4071_Morzan  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092665_v118_n7_p4071_Morzan  |y Registro en la Biblioteca Digital 
961 |a paper_00092665_v118_n7_p4071_Morzan  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 77962