Spectroscopy in Complex Environments from QM-MM Simulations
The applications of multiscale quantum-classical (QM-MM) approaches have shown an extraordinary expansion and diversification in the last couple of decades. A great proportion of these efforts have been devoted to interpreting and reproducing spectroscopic experiments in a variety of complex environ...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Chemical Society
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 76482caa a22048257a 4500 | ||
|---|---|---|---|
| 001 | PAPER-17009 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230607131907.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85045202559 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a CHREA | ||
| 100 | 1 | |a Morzan, U.N. | |
| 245 | 1 | 0 | |a Spectroscopy in Complex Environments from QM-MM Simulations |
| 260 | |b American Chemical Society |c 2018 | ||
| 270 | 1 | 0 | |m Scherlis, D.A.; Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II C1428EHA, Argentina; email: damian@qi.fcen.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Voityuk, A.A., Effects of dynamic disorder on exciton delocalization and photoinduced charge separation in DNA (2013) Photochem. Photobiol. Sci., 12, pp. 1303-1309 | ||
| 504 | |a Zhao, Y., Cao, Z., Absorption spectra of nucleic acid bases in water environment: Insights into from combined QM/MM and cluster-continuum model calculations (2013) J. Theor. Comput. Chem., 12 | ||
| 504 | |a Etienne, T., Gattuso, H., Monari, A., Assfeld, X., QM/MM modeling of Harmane cation fluorescence spectrum in water solution and interacting with DNA (2014) Comput. Theor. Chem., 1040-1041, pp. 367-372 | ||
| 504 | |a Spata, V.A., Matsika, S., Role of excitonic coupling and charge-transfer states in the absorption and CD spectra of Adenine-based oligonucleotides investigated through QM/MM simulations (2014) J. Phys. Chem. A, 118, pp. 12021-12030 | ||
| 504 | |a Sun, G., Ju, M., Zang, H., Zhao, Y., Liang, W., Mechanisms of large Stokes shift and aggregation-enhanced emission of osmapentalyne cations in solution: Combined MD simulations and QM/MM calculations (2015) Phys. Chem. Chem. Phys., 17, pp. 24438-24445 | ||
| 504 | |a Altavilla, S.F., Segarra-Martí, J., Nenov, A., Conti, I., Rivalta, I., Garavelli, M., Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate (2015) Front. Chem., 3, p. 29 | ||
| 504 | |a Sakata, T., Kawashima, Y., Nakano, H., Solvent effect on the absorption spectra of coumarin 120 in water: A combined quantum mechanical and molecular mechanical study (2011) J. Chem. Phys., 134 | ||
| 504 | |a Cerezo, J., Avila Ferrer, F.J., Prampolini, G., Santoro, F., Modeling solvent broadening on the vibronic spectra of a series of coumarin dyes. from implicit to explicit solvent models (2015) J. Chem. Theory Comput., 11, pp. 5810-5825 | ||
| 504 | |a Cerezo, J., Santoro, F., Prampolini, G., Comparing classical approaches with empirical or quantum-mechanically derived force fields for the simulation of electronic lineshapes: Application to coumarin dyes (2016) Theor. Chem. Acc., 135, p. 143 | ||
| 504 | |a Wu, X., Teuler, J., Cailliez, F., Clavaguéra, C., Salahub, D.R., De La Lande, A., Simulating electron dynamics in polarizable environments (2017) J. Chem. Theory Comput., 13, pp. 3985-4002 | ||
| 504 | |a Murugan, N.A., Dasgupta, I., Chakraborty, A., Ganguli, N., Kongsted, J., gren, H., How crucial are finite temperature and solvent effects on structure and absorption spectra of Si10? (2012) J. Phys. Chem. C, 116, pp. 26618-26624 | ||
| 504 | |a Li, X., Carravetta, V., Li, C., Monti, S., Rinkevicius, Z., gren, H., Optical properties of gold nanoclusters functionalized with a small organic compound: Modeling by an integrated quantum-classical approach (2016) J. Chem. Theory Comput., 12, pp. 3325-3339 | ||
| 504 | |a Cuevasanta, E., Zeida, A., Carballal, S., Wedmann, R., Morzan, U.N., Trujillo, M., Radi, R., Alvarez, B., Insights into the mechanism of the reaction between hydrogen sulfide and peroxynitrite (2015) Free Radical Biol. Med., 80, pp. 93-100 | ||
| 504 | |a Marcolongo, J., Morzan, U., Zeida, A., Scherlis, D., Olabe, J., Nitrosodisulfide [S2NO]- (perthionitrite) is a true intermediate during the "cross-talk" of nitrosyl and sulfide (2016) Phys. Chem. Chem. Phys., 18, pp. 30047-30052 | ||
| 504 | |a Marcolongo, J.P., Zeida, A., Slep, L.D., Olabe, J.A., Thionitrous Acid/Thionitrite and Perthionitrite Intermediates in the "crosstalk" of NO and H2S (2017) Adv. Inorg. Chem., 70, pp. 277-309 | ||
| 504 | |a Berendsen, H.J.C., Van Der Spoel, D.V., Van Drunen, R., A message-passing parallel molecular dynamics implementation (1995) Comput. Phys. Commun., 91, pp. 43-56 | ||
| 504 | |a Jorgensen, W., Tirado-Rives, J., The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin (1988) J. Am. Chem. Soc., 110, pp. 1657-1666 | ||
| 504 | |a Pederzoli, M., Sobek, L., Brabec, J., Kowalski, K., Cwiklik, L., Pittner, J., Fluorescence of PRODAN in water: A computational QM/MM MD study (2014) Chem. Phys. Lett., 597, pp. 57-62 | ||
| 504 | |a Mennucci, B., Caricato, M., Ingrosso, F., Cappelli, C., Cammi, R., Tomasi, J., Scalmani, G., Frisch, M.J., How the environment controls absorption and fluorescence spectra of PRODAN: A quantum-mechanical study in homogeneous and heterogeneous media (2008) J. Phys. Chem. B, 112, pp. 414-423 | ||
| 504 | |a Marini, A., Muñoz Losa, A., Biancardi, A., Mennucci, B., What is solvatochromism? (2010) J. Phys. Chem. B, 114, pp. 17128-17135 | ||
| 504 | |a Barucha-Kraszewska, J., Kraszewski, S., Jurkiewicz, P., Ramseyer, C., Hof, M., Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states (2010) Biochim. Biophys. Acta, Biomembr., 1798, pp. 1724-1734 | ||
| 504 | |a Nitschke, W.K., Vequi-Suplicy, C.C., Coutinho, K., Stassen, H., Molecular dynamics investigations of PRODAN in a DLPC bilayer (2012) J. Phys. Chem. B, 116, pp. 2713-2721 | ||
| 504 | |a Fukuda, R., Chidthong, R., Cammi, R., Ehara, M., Optical absorption and fluorescence of PRODAN in solution: Quantum chemical study based on the symmetry-adapted cluster-configuration interaction method (2012) Chem. Phys. Lett., 552, pp. 53-57 | ||
| 504 | |a Loudet, A., Burgess, K., BODIPY dyes and their derivatives: Syntheses and spectroscopic properties (2007) Chem. Rev., 107, pp. 4891-4932 | ||
| 504 | |a Erten-Ela, S., Yilmaz, M.D., Icli, B., Dede, Y., Icli, S., Akkaya, E.U., A Panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells (2008) Org. Lett., 10, pp. 3299-3302 | ||
| 504 | |a Kamkaew, A., Lim, S.H., Lee, H.B., Kiew, L.V., Chung, L.Y., Burgess, K., BODIPY dyes in photodynamic therapy (2013) Chem. Soc. Rev., 42, pp. 77-88 | ||
| 504 | |a Santra, M., Moon, H., Park, M.-H., Lee, T.-W., Kim, Y.K., Ahn, K.H., Dramatic substituent effects on the photoluminescence of boron complexes of 2-(benzothiazol-2-yl)phenols (2012) Chem. - Eur. J., 18, pp. 9886-9893 | ||
| 504 | |a Gilbert, A.T.B., Besley, N.A., Gill, P.M.W., Self-consistent field calculations of excited states using the maximum overlap method (MOM) (2008) J. Phys. Chem. A, 112, pp. 13164-13171 | ||
| 504 | |a Briggs, E.A., Besley, N.A., Robinson, D., QM/MM excited state molecular dynamics and fluorescence spectroscopy of BODIPY (2013) J. Phys. Chem. A, 117, pp. 2644-2650 | ||
| 504 | |a Rudiuk, S., Franceschi-Messant, S., Chouini-Lalanne, N., Perez, E., Rico-Lattes, I., DNA photo-oxidative damage hazard in transfection complexes (2011) Photochem. Photobiol., 87, pp. 103-108 | ||
| 504 | |a Cuquerella, M.C., Lhiaubet-Vallet, V., Cadet, J., Miranda, M.A., Benzophenone photosensitized DNA damage (2012) Acc. Chem. Res., 45, pp. 1558-1570 | ||
| 504 | |a Thompson, M.A., Schenter, G.K., Excited states of the bacteriochlorophyll b dimer of rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarization (1995) J. Phys. Chem., 99, pp. 6374-6386 | ||
| 504 | |a Hasegawa, J., Ohkawa, K., Nakatsuji, H., Excited states of the photosynthetic reaction center of rhodopseudomonas viridis: SACCI study (1998) J. Phys. Chem. B, 102, pp. 10410-10419 | ||
| 504 | |a Reimers, J.R., Hutter, M.C., Hughes, J.M., Hush, N.S., Nature of the special-pair radical cation in bacterial photosynthesis (2000) Int. J. Quantum Chem., 80, pp. 1224-1243 | ||
| 504 | |a Duñach, M., Marti, T., Khorana, H.G., Rothschild, K.J., UV-visible spectroscopy of bacteriorhodopsin mutants: Substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 9873-9877 | ||
| 504 | |a Imamoto, Y., Koshimizu, H., Mihara, K., Hisatomi, O., Mizukami, T., Tsujimoto, K., Kataoka, M., Tokunaga, F., Roles of amino acid residues near the chromophore of photoactive yellow protein (2001) Biochemistry, 40, pp. 4679-4685 | ||
| 504 | |a Shimono, K., Ikeura, Y., Sudo, Y., Iwamoto, M., Kamo, N., Environment around the chromophore in pharaonis phoborhodopsin: Mutation analysis of the retinal binding site (2001) Biochim. Biophys. Acta, Biomembr., 1515, pp. 92-100 | ||
| 504 | |a Houjou, H., Inoue, Y., Sakurai, M., Study of the opsin shift of bacteriorhodopsin: Insight from QM/MM calculations with electronic polarization effects of the protein environment (2001) J. Phys. Chem. B, 105, pp. 867-879 | ||
| 504 | |a Sakurai, M., Sakata, K., Saito, S., Nakajima, S., Inoue, Y., Decisive role of electronic polarization of the protein environment in determining the absorption maximum of halorhodopsin (2003) J. Am. Chem. Soc., 125, pp. 3108-3112 | ||
| 504 | |a Schreiber, M., Buß, V., Sugihara, M., Exploring the Opsin shift with ab initio methods: Geometry and counterion effects on the electronic spectrum of retinal (2003) J. Chem. Phys., 119, pp. 12045-12048 | ||
| 504 | |a Fujimoto, K., Hasegawa, J.-Y., Hayashi, S., Kato, S., Nakatsuji, H., Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study (2005) Chem. Phys. Lett., 414, pp. 239-242 | ||
| 504 | |a Hoffmann, M., Wanko, M., Strodel, P., König, P.H., Frauenheim, T., Schulten, K., Thiel, W., Elstner, M., Color tuning in rhodopsins: The mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II (2006) J. Am. Chem. Soc., 128, pp. 10808-10818 | ||
| 504 | |a Trabanino, R.J., Vaidehi, N., Goddard, W.A., Exploring the molecular mechanism for color distinction in humans (2006) J. Phys. Chem. B, 110, pp. 17230-17239 | ||
| 504 | |a Coto, P.B., Strambi, A., Ferré, N., Olivucci, M., The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 17154-17159 | ||
| 504 | |a Fujimoto, K., Hasegawa, J.-Y., Hayashi, S., Nakatsuji, H., On the color-tuning mechanism of human-blue visual pigment: SAC-CI and QM/MM study (2006) Chem. Phys. Lett., 432, pp. 252-256 | ||
| 504 | |a Fujimoto, K., Hayashi, S., Hasegawa, J.-Y., Nakatsuji, H., Theoretical studies on the color-tuning mechanism in retinal proteins (2007) J. Chem. Theory Comput., 3, pp. 605-618 | ||
| 504 | |a Bravaya, K., Bochenkova, A., Granovsky, A., Nemukhin, A., An opsin shift in rhodopsin: Retinal S0-S1 excitation in protein, in solution, and in the gas phase (2007) J. Am. Chem. Soc., 129, pp. 13035-13042 | ||
| 504 | |a Altun, A., Yokoyama, S., Morokuma, K., Spectral tuning in visual pigments: An ONIOM(QM:MM) study on bovine rhodopsin and its mutants (2008) J. Phys. Chem. B, 112, pp. 6814-6827 | ||
| 504 | |a Fujimoto, K., Hasegawa, J., Nakatsuji, H., Origin of color tuning in human red, green, and blue cone pigments: SAC-CI and QM/MM study (2008) Chem. Phys. Lett., 462, pp. 318-320 | ||
| 504 | |a Wanko, M., Hoffmann, M., Frauenheim, T., Elstner, M., Effect of polarization on the opsin shift in rhodopsins. 1. A combined QM/QM/MM model for bacteriorhodopsin and pharaonis sensory rhodopsin II (2008) J. Phys. Chem. B, 112, pp. 11462-11467 | ||
| 504 | |a Altun, A., Yokoyama, S., Morokuma, K., Mechanism of spectral tuning going from retinal in vacuo to bovine rhodopsin and its mutants: Multireference ab initio quantum mechanics/molecular mechanics studies (2008) J. Phys. Chem. B, 112, pp. 16883-16890 | ||
| 504 | |a Altun, A., Yokoyama, S., Morokuma, K., Quantum mechanical/molecular mechanical studies on spectral tuning mechanisms of visual pigments and other photoactive proteins (2008) Photochem. Photobiol., 84, pp. 845-854 | ||
| 504 | |a Altun, A., Yokoyama, S., Morokuma, K., Color tuning in short wavelength-sensitive human and mouse visual pigments: Ab initio quantum mechanics/molecular mechanics studies (2009) J. Phys. Chem. A, 113, pp. 11685-11692 | ||
| 504 | |a Rajamani, R., Lin, Y., Gao, J., The opsin shift and mechanism of spectral tuning in rhodopsin (2011) J. Comput. Chem., 32, pp. 854-865 | ||
| 504 | |a Sekharan, S., Morokuma, K., Why 11-cis-retinal? Why not 7-cis-, 9-cis-, or 13-cis-retinal in the eye? (2011) J. Am. Chem. Soc., 133, pp. 19052-19055 | ||
| 504 | |a Melaccio, F., Ferre, N., Olivucci, M., Quantum chemical modeling of rhodopsin mutants displaying switchable colors (2012) Phys. Chem. Chem. Phys., 14, pp. 12485-12495 | ||
| 504 | |a Frähmcke, J.S., Wanko, M., Elstner, M., Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods (2012) J. Phys. Chem. B, 116, pp. 3313-3321 | ||
| 504 | |a Ryazantsev, M.N., Altun, A., Morokuma, K., Color tuning in rhodopsins: The origin of the spectral shift between the chloride-bound and anion-free forms of halorhodopsin (2012) J. Am. Chem. Soc., 134, pp. 5520-5523 | ||
| 504 | |a Sekharan, S., Katayama, K., Kandori, H., Morokuma, K., Color vision: OH-Site rule for seeing red and green (2012) J. Am. Chem. Soc., 134, pp. 10706-10712 | ||
| 504 | |a Valsson, O., Campomanes, P., Tavernelli, I., Rothlisberger, U., Filippi, C., Rhodopsin absorption from first principles: Bypassing common pitfalls (2013) J. Chem. Theory Comput., 9, pp. 2441-2454 | ||
| 504 | |a Pal, R., Sekharan, S., Batista, V.S., Spectral tuning in halorhodopsin: The chloride pump photoreceptor (2013) J. Am. Chem. Soc., 135, pp. 9624-9627 | ||
| 504 | |a Campomanes, P., Neri, M., Horta, B.A.C., Röhrig, U.F., Vanni, S., Tavernelli, I., Rothlisberger, U., Origin of the spectral shifts among the early intermediates of the rhodopsin photocycle (2014) J. Am. Chem. Soc., 136, pp. 3842-3851 | ||
| 504 | |a Dokukina, I., Weingart, O., Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin (2015) Phys. Chem. Chem. Phys., 17, pp. 25142-25150 | ||
| 504 | |a Xie, P., Zhou, P., Alsaedi, A., Zhang, Y., PH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein (2017) Spectrochim. Acta, Part A, 174, pp. 25-31 | ||
| 504 | |a Prendergast, F.G., Mann, K.G., Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea (1978) Biochemistry, 17, pp. 3448-3453 | ||
| 504 | |a Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington, S.J., Crystal structure of the aequorea victoria green fluorescent protein (1996) Science, 273, pp. 1392-1395 | ||
| 504 | |a Tsien, R.Y., The green fluorescent protein (1998) Annu. Rev. Biochem., 67, pp. 509-544 | ||
| 504 | |a Acharya, A., Bogdanov, A.M., Grigorenko, B.L., Bravaya, K.B., Nemukhin, A.V., Lukyanov, K.A., Krylov, A.I., Photoinduced chemistry in fluorescent proteins: Curse or blessing? (2017) Chem. Rev., 117, pp. 758-795 | ||
| 504 | |a Marques, M.A.L., López, X., Varsano, D., Castro, A., Rubio, A., Time-dependent density-functional approach for biological chromophores: The case of the green fluorescent protein (2003) Phys. Rev. Lett., 90 | ||
| 504 | |a Creemers, T.M.H., Lock, A.J., Subramaniam, V., Jovin, T.M., Völker, S., Photophysics and optical switching in green fluorescent protein mutants (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 2974-2978 | ||
| 504 | |a Patnaik, S.S., Trohalaki, S., Naik, R.R., Stone, M.O., Pachter, R., Computational study of the absorption spectra of green fluorescent protein mutants (2007) Biopolymers, 85, pp. 253-263 | ||
| 504 | |a Hasegawa, J., Ise, T., Fujimoto, K.J., Kikuchi, A., Fukumura, E., Miyawaki, A., Shiro, Y., Excited states of fluorescent proteins, mKO and DsRed: Chromophore-protein electrostatic interaction behind the color variations (2010) J. Phys. Chem. B, 114, pp. 2971-2979 | ||
| 504 | |a Filippi, C., Buda, F., Guidoni, L., Sinicropi, A., Bathochromic shift in green fluorescent protein: A Puzzle for QM/MM approaches (2012) J. Chem. Theory Comput., 8, pp. 112-124 | ||
| 504 | |a Wachter, R.M., King, B.A., Heim, R., Kallio, K., Tsien, R.Y., Boxer, S.G., Remington, S.J., Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein (1997) Biochemistry, 36, pp. 9759-9765 | ||
| 504 | |a Bublitz, G., King, B.A., Boxer, S.G., Electronic structure of the chromophore in green fluorescent protein (GFP) (1998) J. Am. Chem. Soc., 120, pp. 9370-9371 | ||
| 504 | |a Grigorenko, B.L., Polyakov, I.V., Savitsky, A.P., Nemukhin, A.V., Unusual emitting states of the Kindling fluorescent protein: Appearance of the cationic chromophore in the GFP family (2013) J. Phys. Chem. B, 117, pp. 7228-7234 | ||
| 504 | |a Armengol, P., Gelabert, R., Moreno, M., Lluch, J.M., Theoretical computer-aided mutagenic study on the triple green fluorescent protein mutant S65T/H148D/Y145F (2015) ChemPhysChem, 16, pp. 2134-2139 | ||
| 504 | |a Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K., Tsien, R.Y., The structure of the chromophore within DsRed, a red fluorescent protein from coral (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 11990-11995 | ||
| 504 | |a Sun, Q., Li, Z., Lan, Z., Pfisterer, C., Doerr, M., Fischer, S., Smith, S.C., Thiel, W., Isomerization mechanism of the HcRed fluorescent protein chromophore (2012) Phys. Chem. Chem. Phys., 14, pp. 11413-11424 | ||
| 504 | |a Sánchez-García, E., Doerr, M., Hsiao, Y., Thiel, W., QM/MM study of the monomeric red fluorescent protein DsRed.M1 (2009) J. Phys. Chem. B, 113, pp. 16622-16631 | ||
| 504 | |a Sánchez-García, E., Doerr, M., Thiel, W., QM/MM study of the absorption spectra of DsRed.M1 chromophores (2010) J. Comput. Chem., 31, pp. 1603-1612 | ||
| 504 | |a Bravaya, K.B., Subach, O.M., Korovina, N., Verkhusha, V.V., Krylov, A.I., Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: The elusive blue intermediate revealed (2012) J. Am. Chem. Soc., 134, pp. 2807-2814 | ||
| 504 | |a Armengol, P., Gelabert, R., Moreno, M., Lluch, J.M., Chromophore interactions leading to different absorption spectra in mNeptune1 and mCardinal red fluorescent proteins (2016) Phys. Chem. Chem. Phys., 18, pp. 16964-16976 | ||
| 504 | |a Chen, F., Zeng, Q., Zhuang, W., Liang, W., Characterizing the structures, spectra, and energy landscapes involved in the excited-state proton transfer process of red fluorescent protein LSSmKate1 (2016) J. Phys. Chem. B, 120, pp. 9833-9842 | ||
| 504 | |a Yagi, K., Yamano, T., (1980) Flavins and Flavoproteins: Proceedings of the 6th International Symposium, , Japan Scientific Societies Press: Tokyo and University Park Press: Baltimore, MD | ||
| 504 | |a Cannuccia, E., Pulci, O., Sole, R.D., Cascella, M., Optical properties of flavin mononucleotide: A QM/MM study of protein environment effects (2011) Chem. Phys., 389, pp. 35-38 | ||
| 504 | |a Khrenova, M.G., Nemukhin, A.V., Domratcheva, T., Theoretical characterization of the flavin-based fluorescent protein iLOV and its Q489K mutant (2015) J. Phys. Chem. B, 119, pp. 5176-5183 | ||
| 504 | |a Zanetti-Polzi, L., Aschi, M., Daidone, I., Amadei, A., Theoretical modeling of the absorption spectrum of aqueous riboflavin (2017) Chem. Phys. Lett., 669, pp. 119-124 | ||
| 504 | |a He, Z., Martin, C.H., Birge, R., Freed, K.F., Theoretical studies on excited states of a phenolate anion in the environment of photoactive yellow protein (2000) J. Phys. Chem. A, 104, pp. 2939-2952 | ||
| 504 | |a Gromov, E.V., Burghardt, I., Köppel, H., Cederbaum, L.S., Electronic structure of the PYP chromophore in its native protein environment (2007) J. Am. Chem. Soc., 129, pp. 6798-6806 | ||
| 504 | |a Wei, L., Wang, H., Chen, X., Fang, W., Wang, H., A comprehensive study of isomerization and protonation reactions in the photocycle of the photoactive yellow protein (2014) Phys. Chem. Chem. Phys., 16, pp. 25263-25272 | ||
| 504 | |a Gamiz-Hernandez, A.P., Kaila, V.R.I., Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein (2016) Phys. Chem. Chem. Phys., 18, pp. 2802-2809 | ||
| 504 | |a Cascella, M., Cuendet, M.A., Tavernelli, I., Rothlisberger, U., Optical spectra of Cu(II)-azurin by hybrid TDDFT-molecular dynamics simulations (2007) J. Phys. Chem. B, 111, pp. 10248-10252 | ||
| 504 | |a Penfield, K.W., Gewirth, A.A., Solomon, E.I., Electronic structure and bonding of the blue copper site in plastocyanin (1985) J. Am. Chem. Soc., 107, pp. 4519-4529 | ||
| 504 | |a Cascella, M., Magistrato, A., Tavernelli, I., Carloni, P., Rothlisberger, U., Role of protein frame and solvent for the redox properties of azurin from Pseudomonas aeruginosa (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 19641-19646 | ||
| 504 | |a (1978) The Porphyrins, III. , Dolphin, D., Ed.; Academic Press: Cambridge, MA | ||
| 504 | |a Rimington, C., Spectral-absorption coefficients of some porphyrins in the Soret-band region (1960) Biochem. J., 75, pp. 620-623 | ||
| 504 | |a Momenteau, M., Reed, C.A., Synthetic heme dioxygen complexes (1994) Chem. Rev., 94, pp. 659-698 | ||
| 504 | |a Loew, G.H., Harris, D.L., Role of the Heme active site and protein environment in structure, spectra, and function of the cytochrome P450s (2000) Chem. Rev., 100, pp. 407-419 | ||
| 504 | |a Li, Z., Mukamel, S., First-principles simulation of amide and aromatic side chain ultraviolet spectroscopy of a cyclic dipeptide (2007) J. Phys. Chem. A, 111, pp. 11579-11583 | ||
| 504 | |a Rodriguez, J.J., Mukamel, S., Dissecting two-dimensional ultraviolet spectra of amyloid fibrils into beta-strand and turn contributions (2012) J. Phys. Chem. B, 116, pp. 8830-8835 | ||
| 504 | |a Lam, A.R., Jiang, J., Rojas, A., Scheraga, H., Mukamel, S., Monitoring the mechanism of fiber assembly of AB peptides in Alzheimer's disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy (2012) Biophys. J., 102, p. 733a | ||
| 504 | |a Lam, A., Jiang, J., Mukamel, S., Distinguishing amyloid fibril structures in Alzheimers disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy (2011) Biochemistry, 50, pp. 9809-9816 | ||
| 504 | |a Ren, H., Jiang, J., Mukamel, S., Deep UV resonance Raman spectroscopy of β-sheet amyloid fibrils: A QM/MM simulation (2011) J. Phys. Chem. B, 115, pp. 13955-13962 | ||
| 504 | |a Jiang, J., Mukamel, S., Two-dimensional near-ultraviolet spectroscopy of aromatic residues in amyloid fibrils: A first principles study (2011) Phys. Chem. Chem. Phys., 13, pp. 2394-2400 | ||
| 504 | |a Jiang, J., Mukamel, S., Probing amyloid fibril growth by two-dimensional near-ultraviolet spectroscopy (2011) J. Phys. Chem. B, 115, pp. 6321-6328 | ||
| 504 | |a Jiang, J., Mukamel, S., Two-dimensional ultraviolet (2DUV) spectroscopic tools for identifying fibrillation propensity of protein residue sequences (2010) Angew. Chem., Int. Ed., 49, pp. 9666-9669 | ||
| 504 | |a Jiang, J., Abramavicius, D., Falvo, C., Bulheller, B.M., Hirst, J.D., Mukamel, S., Simulation of two-dimensional ultraviolet spectroscopy of amyloid fibrils (2010) J. Phys. Chem. B, 114, pp. 12150-12156 | ||
| 504 | |a Jiang, J., Abramavicius, D., Bulheller, B.M., Hirst, J.D., Mukamel, S., Ultraviolet spectroscopy of protein backbone transitions in aqueous solution: Combined QM and MM simulations (2010) J. Phys. Chem. B, 114, pp. 8270-8277 | ||
| 504 | |a Abramavicius, D., Jiang, J., Bulheller, B.M., Hirst, J.D., Mukamel, S., Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone (2010) J. Am. Chem. Soc., 132, pp. 7769-7775 | ||
| 504 | |a Tseng, C.-H., Sándor, P., Kotur, M., Weinacht, T.C., Matsika, S., Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV (2012) J. Phys. Chem. A, 116, pp. 2654-2661 | ||
| 504 | |a West, B.A., Womick, J.M., Moran, A.M., Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies (2011) J. Phys. Chem. A, 115, pp. 8630-8637 | ||
| 504 | |a Womick, J.M., Moran, A.M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes (2011) J. Phys. Chem. B, 115, pp. 1347-1356 | ||
| 504 | |a Brixner, T., Stenger, J., Vaswani, H.M., Cho, M., Blankenship, R.E., Fleming, G.R., Two-dimensional spectroscopy of electronic couplings in photosynthesis (2005) Nature, 434, pp. 625-628 | ||
| 504 | |a Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M., Brumer, P., Scholes, G.D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature (2010) Nature, 463, pp. 644-647 | ||
| 504 | |a Panitchayangkoon, G., Hayes, D., Fransted, K.A., Caram, J.R., Harel, E., Wen, J., Blankenship, R.E., Engel, G.S., Long-lived quantum coherence in photosynthetic complexes at physiological temperature (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 12766-12770 | ||
| 504 | |a Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mančal, T., Cheng, Y.-C., Blankenship, R.E., Fleming, G.R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems (2007) Nature, 446, pp. 782-786 | ||
| 504 | |a Ginsberg, N.S., Cheng, Y.-C., Fleming, G.R., Two-dimensional electronic spectroscopy of molecular aggregates (2009) Acc. Chem. Res., 42, pp. 1352-1363 | ||
| 504 | |a Mukamel, S., (1995) Principles of Nonlinear Optical Spectroscopy, , Oxford University Press: New York | ||
| 504 | |a Zhuang, W., Hayashi, T., Mukamel, S., Coherent multidimensional vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges (2009) Angew. Chem., Int. Ed., 48, pp. 3750-3781 | ||
| 504 | |a Abramavicius, D., Palmieri, B., Voronine, D.V., Sanda, F., Mukamel, S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; Quasiparticle versus supermolecule perspectives (2009) Chem. Rev., 109, pp. 2350-2408 | ||
| 504 | |a Garavelli, M., Bernardi, F., Cembran, A., Computation of photochemical reaction mechanisms in organic chemistry (2005) Theor. Comput. Chem., 16, pp. 191-223 | ||
| 504 | |a Rivalta, I., Nenov, A., Cerullo, G., Mukamel, S., Garavelli, M., Ab initio simulations of two-dimensional electronic spectra: The SOS//QM/MM approach (2014) Int. J. Quantum Chem., 114, pp. 85-93 | ||
| 504 | |a Fortenberry, R.C., Huang, X., Yachmenev, A., Thiel, W., Lee, T.J., On the use of quartic force fields in variational calculations (2013) Chem. Phys. Lett., 574, pp. 1-12 | ||
| 504 | |a Alonso De Armiño, D.J., Bustamante, C.M., A quartic force field coordinate substitution scheme using hyperbolic sine coordinates (2017) Int. J. Quantum Chem., 117, p. e25390 | ||
| 504 | |a Strobusch, D., Scheurer, C., Adaptive sparse grid expansions of the vibrational Hamiltonian (2014) J. Chem. Phys., 140 | ||
| 504 | |a Hermes, M.R., Hirata, S., Stochastic algorithm for size-extensive vibrational self-consistent field methods on fully anharmonic potential energy surfaces (2014) J. Chem. Phys., 141 | ||
| 504 | |a Neff, M., Rauhut, G., Toward large scale vibrational configuration interaction calculations (2009) J. Chem. Phys., 131 | ||
| 504 | |a Hermes, M.R., Hirata, S., Diagrammatic theories of anharmonic molecular vibrations (2015) Int. Rev. Phys. Chem., 34, pp. 71-97 | ||
| 504 | |a Thomsen, B., Yagi, K., Christiansen, O., Optimized coordinates in vibrational coupled cluster calculations (2014) J. Chem. Phys., 140 | ||
| 504 | |a McQuarrie, D.A., (1976) Statistical Mechanics, p. 641. , 1 st ed.; Harper & Row: London | ||
| 504 | |a Thomas, M., Brehm, M., Fligg, R., Vöhringer, P., Kirchner, B., Computing vibrational spectra from ab initio molecular dynamics (2013) Phys. Chem. Chem. Phys., 15, pp. 6608-6622 | ||
| 504 | |a Futrelle, R., McGinty, D., Calculation of spectra and correlation functions from molecular dynamics data using the fast Fourier transform (1971) Chem. Phys. Lett., 12, pp. 285-287 | ||
| 504 | |a Morril, T., (1981) Spectrometric Identification of Organic Compounds, , 4 th ed.; John Wiley and Sons: New York | ||
| 504 | |a Martínez, M., Gaigeot, M.-P., Borgis, D., Vuilleumier, R., Extracting effective normal modes from equilibrium dynamics at finite temperature (2006) J. Chem. Phys., 125 | ||
| 504 | |a Walewski, L., Bala, P., Elstner, M., Frauenheim, T., Lesyng, B., Fast QM/MM method and its application to molecular systems (2004) Chem. Phys. Lett., 397, pp. 451-458 | ||
| 504 | |a Schwörer, M., Wichmann, C., Tavan, P., A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water (2016) J. Chem. Phys., 144 | ||
| 504 | |a Tirler, A.O., Hofer, T.S., A Comparative study of [CaEDTA]-2 and [MgEDTA]-2: Structural and dynamical insights from quantum mechanical charge field molecular dynamics (2015) J. Phys. Chem. B, 119, pp. 8613-8622 | ||
| 504 | |a Welke, K., Watanabe, H.C., Wolter, T., Gaus, M., Elstner, M., QM/MM simulations of vibrational spectra of bacteriorhodopsin and channelrhodopsin-2 (2013) Phys. Chem. Chem. Phys., 15, pp. 6651-6659 | ||
| 504 | |a Hofer, T.S., Pribil, A.B., Randolf, B.R., Rode, B.M., Structure and dynamics of solvated Sn(II) in aqueous solution: An ab initio QM/MM MD approach (2005) J. Am. Chem. Soc., 127, pp. 14231-14238 | ||
| 504 | |a Kritayakornupong, C., Plankensteiner, K., Rode, B.M., Structure and dynamics of the Cr(III) ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation (2004) J. Comput. Chem., 25, pp. 1576-1583 | ||
| 504 | |a Kritayakornupong, C., Plankensteiner, K., Rode, B.M., Structure and dynamics of the Cd2+ ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation (2003) J. Phys. Chem. A, 107, pp. 10330-10334 | ||
| 504 | |a Bochenkova, A., Firsov, D., Nemukhin, A., Hybrid DIM-based QM/MM approach applied to vibrational spectra and trapping site structures of HArF in solid argon (2005) Chem. Phys. Lett., 405, pp. 165-171 | ||
| 504 | |a Cui, Q., Karplus, M., Molecular properties from combined QM/MM methods. I. Analytical second derivative and vibrational calculations (2000) J. Chem. Phys., 112, pp. 1133-1149 | ||
| 504 | |a Rovira, C., Schulze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: A QM/MM density functional study (2001) Biophys. J., 81, pp. 435-445 | ||
| 504 | |a Chaban, G.M., Gerber, R.B., Anharmonic vibrational spectroscopy of the glycine-water complex: Calculations for ab initio, empirical, and hybrid quantum mechanics/molecular mechanics potentials (2001) J. Chem. Phys., 115, pp. 1340-1348 | ||
| 504 | |a Inada, Y., Loeffler, H.H., Rode, B.M., Librational, vibrational, and exchange motions of water molecules in aqueous Ni(II) solution: Classical and QM/MM molecular dynamics simulations (2002) Chem. Phys. Lett., 358, pp. 449-458 | ||
| 504 | |a Hayashi, S., Ohmine, I., Proton transfer in bacteriorhodopsin: Structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method (2000) J. Phys. Chem. B, 104, pp. 10678-10691 | ||
| 504 | |a Nonella, M., Boullais, C., Mioskowski, C., Nabedryk, E., Breton, J., Vibrational spectrum and torsional potential of 2-Methoxy-3-methyl-1,4-benzoquinone (1999) J. Phys. Chem. B, 103, pp. 6363-6370 | ||
| 504 | |a Klähn, M., Schlitter, J., Gerwert, K., Theoretical IR spectroscopy based on QM/MM calculations provides changes in charge distribution, bond lengths, and bond angles of the GTP ligand induced by the Ras-protein (2005) Biophys. J., 88, pp. 3829-3844 | ||
| 504 | |a González Lebrero, M.C., Bikiel, D.E., Elola, M.D., Estrin, D.A., Roitberg, A.E., Solvent-induced symmetry breaking of nitrate ion in aqueous clusters: A quantum-classical simulation study (2002) J. Chem. Phys., 117, pp. 2718-2725 | ||
| 504 | |a Tsai, J.-H.M., Harrison, J.G., Martin, J.C., Hamilton, T.P., Van Der Woerd, M., Jablonsky, M.J., Beckman, J.S., Role of conformation of peroxynitrite anion (ONOO-) with its stability and toxicity (1994) J. Am. Chem. Soc., 116, pp. 4115-4116 | ||
| 504 | |a Lo, W.-J., Lee, Y., Tsai, J.M., Tsai, H., Hamilton, T.P., Harrison, J.G., Beckman, J.S., Infrared absorption of cis and transalkalimetal peroxynitrites (MOONO, M = Li, Na, and K) in solid argon (1995) J. Chem. Phys., 103, pp. 4026-4034 | ||
| 504 | |a Bikiel, D.E., Di Salvo, F., González Lebrero, M.C., Doctorovich, F., Estrin, D.A., Solvation and structure of LiAlH4 in ethereal solvents (2005) Inorg. Chem., 44, pp. 5286-5292 | ||
| 504 | |a Guardia, C.M., González Lebrero, M.C., Bari, S.E., Estrin, D.A., QMMM investigation of the reaction products between nitroxyl and O2 in aqueous solution (2008) Chem. Phys. Lett., 463, pp. 112-116 | ||
| 504 | |a Tanzi, L., Ramondo, F., Guidoni, L., Vibrational spectra of water solutions of azoles from QM/MM calculations: Effects of solvation (2012) J. Phys. Chem. A, 116, pp. 10160-10171 | ||
| 504 | |a Ghysels, A., Woodcock, H.L., Larkin, J.D., Miller, B.T., Shao, Y., Kong, J., Neck, D.V., Brooks, B.R., Efficient calculation of QM/MM frequencies with the mobile block Hessian (2011) J. Chem. Theory Comput., 7, pp. 496-514 | ||
| 504 | |a Ghysels, A., Van Neck, D., Van Speybroeck, V., Verstraelen, T., Waroquier, M., Vibrational modes in partially optimized molecular systems (2007) J. Chem. Phys., 126 | ||
| 504 | |a Ghysels, A., Van Neck, D., Waroquier, M., Cartesian formulation of the Mobile Block Hessian approach to vibrational analysis in partially optimized systems (2007) J. Chem. Phys., 127 | ||
| 504 | |a Rippers, Y., Horch, M., Hildebrandt, P., Zebger, I., Mroginski, M.A., Revealing the absolute configuration of the CO and CN ligands at the active site of a [NiFe] hydrogenase (2012) ChemPhysChem, 13, pp. 3852-3856 | ||
| 504 | |a Lee, M.W., Meuwly, M., Molecular dynamics simulation of nitric Oxide in myoglobin (2012) J. Phys. Chem. B, 116, pp. 4154-4162 | ||
| 504 | |a Falvo, C., Daniault, L., Vieille, T., Kemlin, V., Lambry, J.-C., Meier, C., Vos, M.H., Joffre, M., Ultrafast dynamics of carboxy-hemoglobin: Two-dimensional infrared spectroscopy experiments and simulations (2015) J. Phys. Chem. Lett., 6, pp. 2216-2222 | ||
| 504 | |a Yan, Y.-A., Kuhn, O., Geometric correlations and infrared spectrum of adenine-uracil hydrogen bonds in CDCl3 solution (2010) Phys. Chem. Chem. Phys., 12, pp. 15695-15703 | ||
| 504 | |a Jeon, J., Yang, S., Choi, J.-H., Cho, M., Computational vibrational spectroscopy of peptides and proteins in one and two dimensions (2009) Acc. Chem. Res., 42, pp. 1280-1289 | ||
| 504 | |a Watanabe, H.C., Banno, M., Sakurai, M., An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: Incorporation of the quantum effect between solute and solvent (2016) Phys. Chem. Chem. Phys., 18, pp. 7318-7333 | ||
| 504 | |a Placzek, G., Intensität und polarisation der Ramanschen streustrahlung mehratomiger moleküle (1931) Eur. Phys. J. A, 70, pp. 84-103 | ||
| 504 | |a Schatz, G.C., Ratner, M.A., (2002) Quantum Mechanics in Chemistry, , Dover Publications: Mineola, NY | ||
| 504 | |a Long, D.A., (2002) The Raman Effect, , John Wiley & Sons: Chichester, U.K | ||
| 504 | |a Neugebauer, J., Reiher, M., Kind, C., Hess, B.A., Quantum chemical calculation of vibrational spectra of large molecules-Raman and IR spectra for Buckminsterfullerene (2002) J. Comput. Chem., 23, pp. 895-910 | ||
| 504 | |a Kramers, H.A., Heisenberg, W., Über die Streuung von Strahlung durch Atome (1925) Z. Phys., 31, pp. 681-708 | ||
| 504 | |a Dirac, P.A.M., The quantum theory of dispersion (1927) Proc. R. Soc. London, Ser. A, 114, pp. 710-728 | ||
| 504 | |a Behringer, J., Zur theorie des resonanz-Raman-effektes (1958) Z. Elektrochem., Ber. Bunsen-Ges. Phys. Chem., 62, pp. 906-914 | ||
| 504 | |a Atkins, P.W., Friedman, R.S., (2011) Molecular Quantum Mechanics, , Oxford University Press: Oxford, U.K | ||
| 504 | |a Komornicki, A., McIver, J.W., An efficient ab initio method for computing infrared and Raman intensities: Application to ethylene (1979) J. Chem. Phys., 70, p. 2014 | ||
| 504 | |a Albrecht, A.C., On the theory of Raman intensities (1961) J. Chem. Phys., 34, p. 1476 | ||
| 504 | |a Tang, J., Albrecht, A.C., Studies in Raman intensity theory (1968) J. Chem. Phys., 49, p. 1144 | ||
| 504 | |a Frisch, M.J., Yamaguchi, Y., Gaw, J.F., Schaefer, H.F., Binkley, J.S., Analytic Raman intensities from molecular electronic wave functions (1986) J. Chem. Phys., 84, pp. 531-532 | ||
| 504 | |a Bacskay, G.B., Saebø, S., Taylor, P.R., On the calculation of dipole moment and polarizability derivatives by the analytical energy gradient method: Application to the formaldehyde molecule (1984) Chem. Phys., 90, pp. 215-224 | ||
| 504 | |a Peticolas, W.L., Rush, T., Ab initio calculations of the ultraviolet resonance Raman spectra of uracil (1995) J. Comput. Chem., 16, pp. 1261-1270 | ||
| 504 | |a Rush, T.I., Peticolas, W.L., Ab initio transform calculation of resonance Raman spectra of uracil, 1-methyluracil, and 5-methyluracil (1995) J. Phys. Chem., 99, pp. 14647-14658 | ||
| 504 | |a Mroginski, M.-A., Kneip, C., Hildebrandt, P., Mark, F., Excited state geometry calculations and the resonance Raman spectrum of hexamethylpyrromethene (2003) J. Mol. Struct., 661-662, pp. 611-624 | ||
| 504 | |a Neugebauer, J., Hess, B.A., Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory (2004) J. Chem. Phys., 120, pp. 11564-11577 | ||
| 504 | |a Guthmuller, J., Champagne, B., Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents (2007) J. Chem. Phys., 127 | ||
| 504 | |a Heller, E.J., Sundberg, R., Tannor, D., Simple aspects of Raman scattering (1982) J. Phys. Chem., 86, pp. 1822-1833 | ||
| 504 | |a Lee, S., Heller, E.J., Exact time-dependent wave packet propagation: Application to the photodissociation of methyl iodide (1982) J. Chem. Phys., 76, pp. 3035-3044 | ||
| 504 | |a Heller, E.J., The semiclassical way to molecular spectroscopy (1981) Acc. Chem. Res., 14, pp. 368-375 | ||
| 504 | |a Lee, S.-Y., Heller, E.J., Time-dependent theory of Raman scattering (1979) J. Chem. Phys., 71, p. 4777 | ||
| 504 | |a Guthmuller, J., Comparison of simplified sum-over-state expressions to calculate resonance Raman intensities including Franck-Condon and Herzberg-Teller effects (2016) J. Chem. Phys., 144 | ||
| 504 | |a Neugebauer, J., Baerends, E.J., Efremov, E.V., Ariese, F., Gooijer, C., Combined theoretical and experimental deep-UV resonance Raman studies of substituted pyrenes (2005) J. Phys. Chem. A, 109, pp. 2100-2106 | ||
| 504 | |a Thomas, M., Latorre, F., Marquetand, P., Resonance Raman spectra of ortho-nitrophenol calculated by real-time time-dependent density functional theory (2013) J. Chem. Phys., 138 | ||
| 504 | |a Jensen, L., Zhao, L.L., Autschbach, J., Schatz, G.C., Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives (2005) J. Chem. Phys., 123 | ||
| 504 | |a Jensen, L., Autschbach, J., Schatz, G.C., Finite lifetime effects on the polarizability within time-dependent density-functional theory (2005) J. Chem. Phys., 122 | ||
| 504 | |a Kane, K.A., Jensen, L., Calculation of absolute resonance Raman intensities: Vibronic theory vs short-time approximation (2010) J. Phys. Chem. C, 114, pp. 5540-5546 | ||
| 504 | |a Baiardi, A., Bloino, J., Barone, V., A general time-dependent route to resonance-Raman spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects (2014) J. Chem. Phys., 141 | ||
| 504 | |a Baiardi, A., Bloino, J., Barone, V., Accurate Simulation of resonance-Raman spectra of flexible molecules: An internal coordinates approach (2015) J. Chem. Theory Comput., 11, pp. 3267-3280 | ||
| 504 | |a Baiardi, A., Bloino, J., Barone, V., General formulation of vibronic spectroscopy in internal coordinates (2016) J. Chem. Phys., 144 | ||
| 504 | |a Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations (2001) J. Chem. Phys., 115, pp. 10323-10334 | ||
| 504 | |a Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Nonlinear response theory with relaxation: The first-order hyperpolarizability (2005) J. Chem. Phys., 123 | ||
| 504 | |a Mroginski, M.A., Mark, F., Thiel, W., Hildebrandt, P., Quantum mechanics/molecular mechanics calculation of the Raman spectra of the phycocyanobilin chromophore in alpha-C-phycocyanin (2007) Biophys. J., 93, pp. 1885-1894 | ||
| 504 | |a Mroginski, M.A., Murgida, D.H., Hildebrandt, P., The chromophore structural changes during the photocycle of phytochrome: A combined resonance Raman and quantum chemical approach (2007) Acc. Chem. Res., 40, pp. 258-266 | ||
| 504 | |a Mroginski, M.A., Von Stetten, D., Escobar, F.V., Strauss, H.M., Kaminski, S., Scheerer, P., Günther, M., Bongards, C., Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: Reconciling structural and spectroscopic data by QM/MM calculations (2009) Biophys. J., 96, pp. 4153-4163 | ||
| 504 | |a Mroginski, M.A., Kaminski, S., Hildebrandt, P., Raman spectra of the phycoviolobilin cofactor in phycoerythrocyanin calculated by QM/MM methods (2010) ChemPhysChem, 11, pp. 1265-1274 | ||
| 504 | |a Horch, M., Schoknecht, J., Mroginski, M.A., Lenz, O., Hildebrandt, P., Zebger, I., Resonance Raman spectroscopy on [NiFe] hydrogenase provides structural insights into catalytic intermediates and reactions (2014) J. Am. Chem. Soc., 136, pp. 9870-9873 | ||
| 504 | |a Siebert, E., Rippers, Y., Frielingsdorf, S., Fritsch, J., Schmidt, A., Kalms, J., Katz, S., Paasche, L., Resonance Raman spectroscopic analysis of the [NiFe] active site and the proximal [4Fe-3S] cluster of an O2-tolerant membrane-bound hydrogenase in the crystalline state (2015) J. Phys. Chem. B, 119, pp. 13785-13796 | ||
| 504 | |a Sezer, M., Woelke, A.L., Knapp, E.W., Schlesinger, R., Mroginski, M.A., Weidinger, I.M., Redox induced protonation of heme propionates in cytochrome c oxidase: Insights from surface enhanced resonance Raman spectroscopy and QM/MM calculations (2017) Biochim. Biophys. Acta, Bioenerg., 1858, pp. 103-108 | ||
| 504 | |a Kubota, K., Shingae, T., Foster, N.D., Kumauchi, M., Hoff, W.D., Unno, M., Active site structure of photoactive yellow protein with a locked chromophore analogue revealed by near-infrared Raman optical activity (2013) J. Phys. Chem. Lett., 4, pp. 3031-3038 | ||
| 504 | |a Malolepsza, E., Witek, H.A., Morokuma, K., Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method (2005) Chem. Phys. Lett., 412, pp. 237-243 | ||
| 504 | |a Frenkel, J., On the transformation of light into heat (1931) Phys. Rev., 37, pp. 1276-1294 | ||
| 504 | |a Abramavicius, D., Palmieri, B., Voronine, D.V., Sanda, F., Mukamel, S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; Quasiparticle versus supermolecule perspectives (2009) Chem. Rev., 109, pp. 2350-2408 | ||
| 504 | |a Fleischmann, M., Hendra, P.J., McQuillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode (1974) Chem. Phys. Lett., 26, pp. 163-166 | ||
| 504 | |a Jeanmaire, D.L., Van Duyne, R.P., Surface raman spectroelectrochemistryPart I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode (1977) J. Electroanal. Chem. Interfacial Electrochem., 84, pp. 1-20 | ||
| 504 | |a Nie, S., Emory, S.R., Probing single molecules and single nanoparticles by surface enhanced raman scattering (1997) Science, 275, pp. 1102-1106 | ||
| 504 | |a Kneipp, K., Wang, Y., Kneipp, H., Itzkan, I., Dasari, R., Feld, M., Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering (1996) Phys. Rev. Lett., 76, pp. 2444-2447 | ||
| 504 | |a Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Single molecule detection using surface-enhanced Raman scattering (SERS) (1997) Phys. Rev. Lett., 78, pp. 1667-1670 | ||
| 504 | |a Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J., Surface-enhanced Raman spectroscopy (SERS) Progress and trends (2012) Anal. Bioanal. Chem., 403, pp. 27-54 | ||
| 504 | |a Zrimsek, A.B., Chiang, N., Mattei, M., Zaleski, S., McAnally, M.O., Chapman, C.T., Henry, A.-I., Van Duyne, R.P., Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy (2017) Chem. Rev., 117, pp. 7583-7613 | ||
| 504 | |a Pozzi, F., Zaleski, S., Casadio, F., Leona, M., Lombardi, J., Van Duyne, R., (2016) Nanoscience and Cultural Heritage, pp. 161-204. , Atlantis Press: Paris | ||
| 504 | |a Henry, A.I., Sharma, B., Cardinal, M.F., Kurouski, D., Van Duyne, R.P., Surface-enhanced Raman spectroscopy biosensing: In vivo diagnostics and multimodal imaging (2016) Anal. Chem., 88, pp. 6638-6647 | ||
| 504 | |a Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals (1978) J. Chem. Phys., 69, p. 4159 | ||
| 504 | |a Moskovits, M., Enhanced Raman scattering by molecules adsorbed on electrodes-a theoretical model (1979) Solid State Commun., 32, pp. 59-62 | ||
| 504 | |a Gersten, J., Nitzan, A., Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces (1980) J. Chem. Phys., 73, pp. 3023-3037 | ||
| 504 | |a Aravind, P., Metiu, H., The enhancement of raman and fluorescent intensity by small surface roughness. Changes in dipole emission (1980) Chem. Phys. Lett., 74, pp. 301-305 | ||
| 504 | |a Kerker, M., Wang, D.-S., Chew, H., Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles (1980) Appl. Opt., 19, p. 3373 | ||
| 504 | |a Moskovits, M., Surface-enhanced spectroscopy (1985) Rev. Mod. Phys., 57, pp. 783-826 | ||
| 504 | |a Shalaev, V.M., Stockman, M.I., Fractals: Optical susceptibility and giant raman scattering (1988) Z. Phys. D: At., Mol. Clusters, 10, pp. 71-79 | ||
| 504 | |a Kottmann, J., Martin, O., Plasmon resonant coupling in metallic nanowires (2001) Opt. Express, 8, pp. 655-663 | ||
| 504 | |a Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment (2003) J. Phys. Chem. B, 107, pp. 668-677 | ||
| 504 | |a Prodan, E., Radloff, C., Halas, N.J., Norlander, P., A hybridization model for the plasmon response of complex nanostructures (2003) Science, 302, pp. 419-422 | ||
| 504 | |a Ball, P., Martin Fleischmann (1927-2012) (2012) Nature, 489, p. 34 | ||
| 504 | |a Moskovits, M., Persistent misconceptions regarding SERS (2013) Phys. Chem. Chem. Phys., 15, p. 5301 | ||
| 504 | |a Otto, A., Billmann, J., Eickmans, J., Ertürk, U., Pettenkofer, C., The "adatom model" of SERS (Surface Enhanced Raman Scattering): The present status (1984) Surf. Sci., 138, pp. 319-338 | ||
| 504 | |a Adrian, F.J., Charge transfer effects in surface-enhanced Raman scattering (1982) J. Chem. Phys., 77, p. 5302 | ||
| 504 | |a Michaels, A.M., Nirmal, M., Brus, L.E., Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals (1999) J. Am. Chem. Soc., 121, pp. 9932-9939 | ||
| 504 | |a Tripp, R.A., Dluhy, R.A., Zhao, Y., Novel nanostructures for SERS biosensing (2008) Nano Today, 3, pp. 31-37 | ||
| 504 | |a Hu, Z., Chulhai, D.V., Jensen, L., Simulating surface-enhanced hyper-Raman scattering using atomistic electrodynamics-quantum mechanical models (2016) J. Chem. Theory Comput., 12, pp. 5968-5978 | ||
| 504 | |a Camden, J.P., Dieringer, J.A., Wang, Y., Masiello, D.J., Marks, L.D., Schatz, G.C., Van Duyne, R.P., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots (2008) J. Am. Chem. Soc., 130, pp. 12616-12617 | ||
| 504 | |a Galarreta, B.C., Harté, E., Marquestaut, N., Norton, P.R., Lagugné-Labarthet, F., Plasmonic properties of Fischer's patterns: Polarization effects (2010) Phys. Chem. Chem. Phys., 12, pp. 6810-6816 | ||
| 504 | |a Mie, G., Beiträge zur optik trüber medien, speziell kolloidaler metallösungen (1908) Ann. Phys., 330, pp. 377-445 | ||
| 504 | |a Kerker, M., (1969) The Scattering of Light and Other Electromagnetic Radiation, 7, p. 666. , Academic Press: London | ||
| 504 | |a Xu, H., Wang, X.-H., Persson, M.P., Xu, H.Q., Käll, M., Johansson, P., Unified treatment of fluorescence and raman scattering processes near metal surfaces (2004) Phys. Rev. Lett., 93 | ||
| 504 | |a Käll, M., Xu, H., Johansson, P., Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy (2005) J. Raman Spectrosc., 36, pp. 510-514 | ||
| 504 | |a Johansson, P., Xu, H., Käll, M., Surface-enhanced Raman scattering and fluorescence near metal nanoparticles (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72 | ||
| 504 | |a Wriedt, T., Mie theory: A review (2012) Springer Ser. Opt. Sci., 169, pp. 53-71 | ||
| 504 | |a Purcell, E.M., Pennypacker, C.R., Scattering and absorption of light by nonspherical dielectric grains (1973) Astrophys. J., 186, p. 705 | ||
| 504 | |a Goodman, J.J., Draine, B.T., Flatau, P.J., Application of fast-Fourier-transform techniques to the discrete-dipole approximation (1991) Opt. Lett., 16, pp. 1198-1200 | ||
| 504 | |a Sherry, L.J., Jin, R., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P., Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms (2006) Nano Lett., 6, pp. 2060-2065 | ||
| 504 | |a Qin, L., Zou, S., Xue, C., Atkinson, A., Schatz, G.C., Mirkin, C.A., Designing, fabricating, and imaging Raman hot spots (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 13300-13303 | ||
| 504 | |a Loke, V.L.Y., Huda, G.M., Donev, E.U., Schmidt, V., Hastings, J.T., Mengüç, M.P., Wriedt, T., Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres (2014) Appl. Phys. B: Lasers Opt., 115, pp. 237-246 | ||
| 504 | |a Amendola, V., Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method (2016) Phys. Chem. Chem. Phys., 18, pp. 2230-2241 | ||
| 504 | |a Wei, J.J., Yang, P., Portales, H., Albouy, P.A., Pileni, M.P., Collective surface plasmon resonances in two-dimensional assemblies of Au and Ag nanocrystals: Experiments and discrete dipole approximation simulation (2016) J. Phys. Chem. C, 120, pp. 13732-13738 | ||
| 504 | |a Yee, K.S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media (1966) IEEE Trans. Antennas Propag., 14, pp. 302-307 | ||
| 504 | |a Lopata, K., Neuhauser, D., Multiscale Maxwell-Schrödinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics (2009) J. Chem. Phys., 130 | ||
| 504 | |a Zeng, Z., Liu, Y., Wei, J., Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications (2016) TrAC, Trends Anal. Chem., 75, pp. 162-173 | ||
| 504 | |a Jin, J., (2002) The Finite Element Method in Electromagnetics, p. 846. , John Wiley & Sons: Hoboken, NJ | ||
| 504 | |a Savage, K.J., Hawkeye, M.M., Esteban, R., Borisov, A.G., Aizpurua, J., Baumberg, J.J., Revealing the quantum regime in tunnelling plasmonics (2012) Nature, 491, pp. 574-577 | ||
| 504 | |a Scholl, J.A., García-Etxarri, A., Koh, A.L., Dionne, J.A., Observation of quantum tunneling between two plasmonic nanoparticles (2013) Nano Lett., 13, pp. 564-569 | ||
| 504 | |a Marinica, D.C., Kazansky, A.K., Nordlander, P., Aizpurua, J., Borisov, A.G., Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer (2012) Nano Lett., 12, pp. 1333-1339 | ||
| 504 | |a Zhu, W., Esteban, R., Borisov, A.G., Baumberg, J.J., Nordlander, P., Lezec, H.J., Aizpurua, J., Crozier, K.B., Quantum mechanical effects in plasmonic structures with subnanometre gaps (2016) Nat. Commun., 7, p. 11495 | ||
| 504 | |a Nordlander, P., Molecular tuning of quantum plasmon resonances (2014) Science, 343, pp. 1444-1445 | ||
| 504 | |a Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J., Bridging quantum and classical plasmonics with a quantum-corrected model (2012) Nat. Commun., 3, p. 825 | ||
| 504 | |a Marinica, D.C., Zapata, M., Nordlander, P., Kazansky, A.K., Echenique, P.M., Aizpurua, J., Borisov, A.G., Active quantum plasmonics (2015) Sci. Adv., 1, p. e1501095 | ||
| 504 | |a Marinica, D.-C., Aizpurua, J., Borisov, A.G., Quantum effects in the plasmon response of bimetallic core-shell nanostructures (2016) Opt. Express, 24, p. 23941 | ||
| 504 | |a Tan, S.F., Wu, L., Yang, J.K.W., Bai, P., Bosman, M., Nijhuis, C.A., Quantum plasmon resonances controlled by molecular tunnel junctions (2014) Science, 343, pp. 1496-1499 | ||
| 504 | |a Wu, L., Duan, H., Bai, P., Bosman, M., Yang, J.K.W., Li, E., Fowler - Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles (2013) ACS Nano, 7, pp. 707-716 | ||
| 504 | |a Zhang, P., Feist, J., Rubio, A., García-González, P., García-Vidal, F.J., Ab initio nanoplasmonics: The impact of atomic structure (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 90 | ||
| 504 | |a Xiang, H., Zhang, M., Zhang, X., Lu, G., Understanding quantum plasmonics from time-dependent orbital-free density functional theory (2016) J. Phys. Chem. C, 120, pp. 14330-14336 | ||
| 504 | |a Gieseking, R.L., Ratner, M.A., Schatz, G.C., Semiempirical modeling of Ag nanoclusters: New parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation (2016) J. Phys. Chem. A, 120, pp. 4542-4549 | ||
| 504 | |a Morton, S.M., Silverstein, D.W., Jensen, L., Theoretical studies of plasmonics using electronic structure methods (2011) Chem. Rev., 111, pp. 3962-3994 | ||
| 504 | |a Corni, S., Tomasi, J., Enhanced response properties of a chromophore physisorbed on a metal particle (2001) J. Chem. Phys., 114, pp. 3739-3751 | ||
| 504 | |a Corni, S., Tomasi, J., Theoretical evaluation of Raman spectra and enhancement factors for a molecule adsorbed on a complex-shaped metal particle (2001) Chem. Phys. Lett., 342, pp. 135-140 | ||
| 504 | |a Corni, S., Tomasi, J., Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study (2002) J. Chem. Phys., 116, pp. 1156-1164 | ||
| 504 | |a Masiello, D.J., Schatz, G.C., Many-body theory of surface-enhanced Raman scattering (2008) Phys. Rev. A: At., Mol., Opt. Phys., 78 | ||
| 504 | |a Morton, S.M., Jensen, L., A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles (2010) J. Chem. Phys., 133 | ||
| 504 | |a Payton, J.L., Morton, S.M., Moore, J.E., Jensen, L., A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy (2012) J. Chem. Phys., 136 | ||
| 504 | |a Payton, J.L., Morton, S.M., Moore, J.E., Jensen, L., A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering (2014) Acc. Chem. Res., 47, pp. 88-99 | ||
| 504 | |a Moore, J.E., Morton, S.M., Jensen, L., Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS (2012) J. Phys. Chem. Lett., 3, pp. 2470-2475 | ||
| 504 | |a Rinaldi, J.M., Morton, S.M., Jensen, L., A discrete interaction model/quantum mechanical method for simulating nonlinear optical properties of molecules near metal surfaces (2013) Mol. Phys., 111, pp. 1322-1331 | ||
| 504 | |a Chulhai, D.V., Jensen, L., Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models (2014) J. Phys. Chem. A, 118, pp. 9069-9079 | ||
| 504 | |a Arcisauskaite, V., Kongsted, J., Hansen, T., Mikkelsen, K.V., Charge transfer excitation energies in pyridine-silver complexes studied by a QM/MM method (2009) Chem. Phys. Lett., 470, pp. 285-288 | ||
| 504 | |a Rinkevicius, Z., Li, X., Sandberg, J.A.R., Mikkelsen, K.V., gren, H., A hybrid density functional theory/molecular mechanics approach for linear response properties in heterogeneous environments (2014) J. Chem. Theory Comput., 10, pp. 989-1003 | ||
| 504 | |a Rinkevicius, Z., Li, X., Sandberg, J.A., gren, H., Non-linear optical properties of molecules in heterogeneous environments: A quadratic density functional/molecular mechanics response theory (2014) Phys. Chem. Chem. Phys., 16, pp. 8981-8989 | ||
| 504 | |a Rinkevicius, Z., Sandberg, J.A.R., Li, X., Linares, M., Norman, P., gren, H., Hybrid complex polarization propagator/molecular mechanics method for heterogeneous environments (2016) J. Chem. Theory Comput., 12, pp. 2661-2667 | ||
| 504 | |a Li, X., Rinkevicius, Z., gren, H., Two-photon absorption of metal-assisted chromophores (2014) J. Chem. Theory Comput., 10, pp. 5630-5639 | ||
| 504 | |a Li, X., Rinkevicius, Z., gren, H., Electronic circular dichroism of surface-adsorbed molecules by means of quantum mechanics capacitance molecular mechanics (2014) J. Phys. Chem. C, 118, pp. 5833-5840 | ||
| 504 | |a Chen, H., Blaber, M.G., Standridge, S.D., Demarco, E.J., Hupp, J.T., Ratner, M.A., Schatz, G.C., Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell (2012) J. Phys. Chem. C, 116, pp. 10215-10221 | ||
| 504 | |a Mullin, J., Valley, N., Blaber, M.G., Schatz, G.C., Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie Theory) methods for calculating surface enhanced raman and hyper-raman spectra (2012) J. Phys. Chem. A, 116, pp. 9574-9581 | ||
| 504 | |a Mullin, J., Schatz, G.C., Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra (2012) J. Phys. Chem. A, 116, pp. 1931-1938 | ||
| 504 | |a Chulhai, D.V., Chen, X., Jensen, L., Simulating ensemble-averaged surface-enhanced Raman scattering (2016) J. Phys. Chem. C, 120, pp. 20833-20842 | ||
| 504 | |a Pipolo, S., Corni, S., Real-time description of the electronic dynamics for a molecule close to a plasmonic nanoparticle (2016) J. Phys. Chem. C, 120, pp. 28774-28781 | ||
| 504 | |a Raghunathan, S., Nest, M., The lack of resonance problem in coherent control with real-time time-dependent density functional theory (2012) J. Chem. Theory Comput., 8, pp. 806-809 | ||
| 504 | |a Raghunathan, S., Nest, M., Limits of the creation of electronic wave packets using time-dependent density functional theory (2012) J. Phys. Chem. A, 116, pp. 8490-8493 | ||
| 504 | |a Habenicht, B.F., Tani, N.P., Provorse, M.R., Isborn, C.M., Two-electron Rabi oscillations in real-time time-dependent density-functional theory (2014) J. Chem. Phys., 141 | ||
| 504 | |a Duan, S., Tian, G., Luo, Y., Theory for modeling of high resolution resonant and nonresonant Raman images (2016) J. Chem. Theory Comput., 12, pp. 4986-4995 | ||
| 504 | |a Neal, S., Nip, A.M., Zhang, H., Wiashart, D.S., Rapid and accurate calculation of protein H-1 C-13 and N-15 chemical shifts (2003) J. Biomol. NMR, 26, pp. 215-240 | ||
| 504 | |a Kohlhoff, K., Robustelli, P., Cavalli, A., Salvatella, X., Vendruscolo, M., Fast and accurate predictions of protein NMR chemical shifts from interatomic distances (2009) J. Am. Chem. Soc., 131, pp. 13894-13895 | ||
| 504 | |a Shen, Y., Bax, A., Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology (2007) J. Biomol. NMR, 38, pp. 289-302 | ||
| 504 | |a Shen, Y., Bax, A., SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network (2010) J. Biomol. NMR, 48, pp. 13-22 | ||
| 504 | |a Sumowski, C.V., Hanni, M., Schweizer, S., Ochsenfeld, C., Sensitivity of ab initio vs empirical methods in computing structural effects on NMR chemical shifts for the example of peptides (2014) J. Chem. Theory Comput., 10, pp. 122-133 | ||
| 504 | |a Helgaker, T., Jaszuński, M., Ruud, K., Ab initio methods for the calculation of NMR shielding and indirect spinspin coupling constants (1999) Chem. Rev., 99, pp. 293-352 | ||
| 504 | |a Sebastiani, D., Parrinello, M., A new ab-initio approach for NMR chemical shifts in periodic systems (2001) J. Phys. Chem. A, 105, pp. 1951-1958 | ||
| 504 | |a Putrino, A., Sebastiani, D., Parrinello, M., Generalized variational density functional perturbation theory (2000) J. Chem. Phys., 113, pp. 7102-7109 | ||
| 504 | |a London, F., Quantum theory of interatomic currents in aromatic compounds.Thorie quantique des courants interatomiques dans les combinaisons aromatiques (1937) J. Phys. Radium, 8, pp. 397-409 | ||
| 504 | |a Ditchfield, R., Self-consistent perturbation theory of diamagnetism (1974) Mol. Phys., 27, pp. 789-807 | ||
| 504 | |a Wolinski, K., Hinton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations (1990) J. Am. Chem. Soc., 112, pp. 8251-8260 | ||
| 504 | |a Kutzelnigg, W., Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities (1980) Isr. J. Chem., 19, pp. 193-200 | ||
| 504 | |a Schindler, M., Kutzelnigg, W., Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules (1982) J. Chem. Phys., 76, pp. 1919-1933 | ||
| 504 | |a Fukui, H., Theory and calculation of nuclear shielding constants (1997) Prog. Nucl. Magn. Reson. Spectrosc., 31, pp. 317-342 | ||
| 504 | |a Gauss, J., Stanton, J., Coupled-cluster calculatioons of nuclear magnetic chemical shifts (1995) J. Chem. Phys., 103, pp. 3561-3577 | ||
| 504 | |a De Dios, A., Pearson, J., Oldfield, E., Secondary and tertiary structural effects on protein NMR chemical shifts: An ab initio approach (1993) Science, 260, pp. 1491-1496 | ||
| 504 | |a Manzoni, V., Lyra, M.L., Coutinho, K., Canuto, S., Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: Study of the optical and magnetic properties of diazines in water (2011) J. Chem. Phys., 135 | ||
| 504 | |a Zhu, T., Zhang, J.Z.H., He, X., Automated fragmentation QM/MM calculation of amide proton chemical shifts in proteins with explicit solvent model (2013) J. Chem. Theory Comput., 9, pp. 2104-2114 | ||
| 504 | |a Helgaker, T., Jaszuński, M., Pecul, M., The quantum-chemical calculation of NMR indirect spinspin coupling constants (2008) Prog. Nucl. Magn. Reson. Spectrosc., 53, pp. 249-268 | ||
| 504 | |a Gester, R.M., Georg, H.C., Canuto, S., Caputo, M.C., Provasi, P.F., NMR chemical shielding and spin-spin coupling constants of liquid NH3: A systematic investigation using the sequential QM/MM method (2009) J. Phys. Chem. A, 113, pp. 14936-14942 | ||
| 504 | |a Wang, B., He, X., Merz, K.M., Quantum mechanical study of vicinal J spinspin coupling constants for the protein backbone (2013) J. Chem. Theory Comput., 9, pp. 4653-4659 | ||
| 504 | |a Flaig, D., Beer, M., Ochsenfeld, C., Convergence of electronic structure with the size of the QM region: Example of QM/MM NMR shieldings (2012) J. Chem. Theory Comput., 8, pp. 2260-2271 | ||
| 504 | |a Steinmann, C., Olsen, J.M.H., Kongsted, J., Nuclear magnetic shielding constants from quantum mechanical/molecular mechanical calculations using polarizable embedding: Role of the embedding potential (2014) J. Chem. Theory Comput., 10, pp. 981-988 | ||
| 504 | |a Sebastiani, D., Rothlisberger, U., Nuclear magnetic resonance chemical shifts from hybrid DFT QM/MM calculations (2004) J. Phys. Chem. B, 108, pp. 2807-2815 | ||
| 504 | |a Komin, S., Gossens, C., Tavernelli, I., Rothlisberger, U., Sebastiani, D., NMR solvent shifts of adenine in aqueous solution from hybrid QM/MM molecular dynamics simulations (2007) J. Phys. Chem. B, 111, pp. 5225-5232 | ||
| 504 | |a Bagno, A., D'Amico, F., Saielli, G., Computing the NMR spectrum of a bulk ionic liquid phase by QM/MM methods (2006) J. Phys. Chem. B, 110, pp. 23004-23006 | ||
| 504 | |a Pedone, A., Pavone, M., Menziani, M.C., Barone, V., Accurate first-principle prediction of 29Si and 17O NMR parameters in SiO2 polymorphs: The cases of zeolites sigma-2 and ferrierite (2008) J. Chem. Theory Comput., 4, pp. 2130-2140 | ||
| 504 | |a Fang, C., Xie, Y., Johnston, M.R., Ruan, Y., Tang, B.Z., Peng, Q., Tang, Y., SERS and NMR studies of typical aggregation-induced emission molecules (2015) J. Phys. Chem. A, 119, pp. 8049-8054 | ||
| 504 | |a Sundholm, D., Rauhalahti, M., Özcan, N., Mera-Adasme, R., Kussmann, J., Luenser, A., Ochsenfeld, C., Nuclear magnetic shieldings of stacked aromatic and antiaromatic molecules (2017) J. Chem. Theory Comput., 13, pp. 1952-1962 | ||
| 504 | |a Gascón, J.A., Sproviero, E.M., Batista, V.S., QM/MM study of the NMR spectroscopy of the retinyl chromophore in visual rhodopsin (2005) J. Chem. Theory Comput., 1, pp. 674-685 | ||
| 504 | |a Gascón, J.A., Leung, S.S.F., Batista, E.R., Batista, V.S., A self-consistent space-domain decomposition method for QM/MM computations of protein electrostatic potentials (2006) J. Chem. Theory Comput., 2, pp. 175-186 | ||
| 504 | |a Askerka, M., Ho, J., Batista, E., Gascón, J., Batista, V., The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes (2016) Methods Enzymol., 577, pp. 443-481 | ||
| 504 | |a Ho, J., Newcomer, M.B., Ragain, C.M., Gascón, J.A., Batista, E.R., Loria, J.P., Batista, V.S., MoD-QM/MM structural refinement method: Characterization of hydrogen bonding in the Oxytricha nova G-quadruplex (2014) J. Chem. Theory Comput., 10, pp. 5125-5135 | ||
| 504 | |a Wang, B., Brothers, E.N., Van Der Vaart, A., Merz, K.M., Jr., Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: A divide-and-conquer approach (2004) J. Chem. Phys., 120, pp. 11392-11400 | ||
| 504 | |a Wang, B., Merz, K.M., A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules (2006) J. Chem. Theory Comput., 2, pp. 209-215 | ||
| 504 | |a He, X., Wang, B., Merz, K.M., Jr., Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach (2009) J. Phys. Chem. B, 113, pp. 10380-10388 | ||
| 504 | |a Zhang, W., Gascón, J., QM/MM investigation of structure and spectroscopic properties of a vanadium containing peroxidase (2008) J. Inorg. Biochem., 102, pp. 1684-1690 | ||
| 504 | |a Pauwels, E., Claeys, J., Martins, D., Waroquier, M., Bifulco, G., Van Speybroeck, A., Madder, V., Accurate prediction of 1H chemical shifts in interstrand cross-linked DNA (2013) RSC Adv., 3, pp. 3925-3938 | ||
| 504 | |a Saito, K., Ishikita, H., H atom positions and nuclear magnetic resonance chemical shifts of short H bonds in photoactive yellow protein (2012) Biochemistry, 51, pp. 1171-1177 | ||
| 504 | |a Lancaster, K.M., Zaballa, M.E., Sproules, S., Sundararajan, M., Debeer, S., Richards, J.H., Vila, A.J., Gray, H.B., Outer-sphere contributions to the electronic structure of type zero copper proteins (2012) J. Am. Chem. Soc., 134, pp. 8241-8253 | ||
| 504 | |a Fritz, M., Quinn, C.M., Wang, M., Hou, G., Lu, X., Koharudin, L.M., Polenova, T., Gronenborn, A.M., Toward closing the gap: Quantum mechanical calculations and experimentally measured chemical shifts of a microcrystalline lectin (2017) J. Phys. Chem. B, 121, pp. 3574-3585 | ||
| 504 | |a Dickson, D.P., Berry, F.J., (1986) Mossbauer Spectroscopy, , Cambridge University Press: Cambridge, U.K | ||
| 504 | |a Neese, F., Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory (2001) J. Chem. Phys., 115, pp. 11080-11096 | ||
| 504 | |a Neese, F., Metal and ligand hyperfine couplings in transition metal complexes: The effect of spin-orbit coupling as studied by coupled perturbed Kohn-Sham theory (2003) J. Chem. Phys., 118, pp. 3939-3948 | ||
| 504 | |a Neese, F., Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations (2005) J. Chem. Phys., 122 | ||
| 504 | |a Moon, S., Patchkovskii, S., Salahub, D.R., QM/MM calculations of EPR hyperfine coupling constants in blue copper proteins (2003) J. Mol. Struct.: THEOCHEM, 632, pp. 287-295 | ||
| 504 | |a Schöneboom, J.C., Neese, F., Thiel, W., Toward identification of the compound i reactive intermediate in cytochrome P450 chemistry: A QM/MM study of its EPR and Mössbauer parameters (2005) J. Am. Chem. Soc., 127, pp. 5840-5853 | ||
| 504 | |a Sinnecker, S., Neese, F., QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study (2006) J. Comput. Chem., 27, pp. 1463-1475 | ||
| 504 | |a Porro, C.S., Kumar, D., Devisser, S.P., Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: Search for an Fe(I) oxidation state (2009) Phys. Chem. Chem. Phys., 11, pp. 10219-10226 | ||
| 504 | |a Radoul, M., Sundararajan, M., Potapov, A., Riplinger, C., Neese, F., Goldfarb, D., Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations (2010) Phys. Chem. Chem. Phys., 12, pp. 7276-7289 | ||
| 504 | |a Sundararajan, M., Neese, F., Detailed QM/MM study of the electron paramagnetic resonance parameters of nitrosyl myoglobin (2012) J. Chem. Theory Comput., 8, pp. 563-574 | ||
| 504 | |a Bernini, C., Pogni, R., Ruiz-Duenas, F.J., Martínez, A.T., Basosi, R., Sinicropi, A., EPR parameters of amino acid radicals in P. Eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level (2011) Phys. Chem. Chem. Phys., 13, pp. 5078-5098 | ||
| 504 | |a Herbert, J., Zhang, X., Morrison, A., Liu, J., Beyond time-dependent density functional theory using only single excitations: Methods for computational studies of excited states in complex systems (2016) Acc. Chem. Res., 49, pp. 931-941 | ||
| 504 | |a Podryabinkin, E., Shapeev, A., Active learning of linearly parametrized interatomic potentials (2017) Comput. Mater. Sci., 140, pp. 171-180 | ||
| 504 | |a Csanyi, G., Albaret, T., Payne, M., De Vita, A., Learn on the fly: A hybrid classical and quantum-mechanical molecular dynamics simulation (2004) Phys. Rev. Lett., 93 | ||
| 504 | |a Kermode, J.R., Albaret, T., Sherman, D., Bernstein, N., Gumbsch, P., Payne, M.C., Csányi, G., De Vita, A., Low-speed fracture instabilities in a brittle crystal (2008) Nature, 455, pp. 1224-1227 | ||
| 504 | |a Sinitskiy, A.V., Voth, G.A., (2017) Quantum Mechanics/Coarse-Grained Molecular Mechanics (QM/CG-MM), , https://arxiv.org/abs/1709.09771, arXiv:1709.09771 [physics.chem-ph]. arXiv.org e-Print archive | ||
| 504 | |a Shen, L., Yang, W., Quantum mechanics/molecular mechanics method combined with hybrid all-atom and coarse-grained model: Theory and application on redox potential calculations (2016) J. Chem. Theory Comput., 12, pp. 2017-2027 | ||
| 504 | |a Barone, V., The virtual multifrequency spectrometer: A new paradigm for spectroscopy (2016) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 6, pp. 86-110 | ||
| 520 | 3 | |a The applications of multiscale quantum-classical (QM-MM) approaches have shown an extraordinary expansion and diversification in the last couple of decades. A great proportion of these efforts have been devoted to interpreting and reproducing spectroscopic experiments in a variety of complex environments such as solutions, interfaces, and biological systems. Today, QM-MM-based computational spectroscopy methods constitute accomplished tools with refined predictive power. The present review summarizes the advances that have been made in QM-MM approaches to UV-visible, Raman, IR, NMR, electron paramagnetic resonance, and Mössbauer spectroscopies, providing in every case an introductory discussion of the corresponding methodological background. A representative number of applications are presented to illustrate the historical evolution and the state of the art of this field, highlighting the advantages and limitations of the available methodologies. Finally, we present our view of the perspectives and open challenges in the field. © 2018 American Chemical Society. |l eng | |
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires | ||
| 536 | |a Detalles de la financiación: National Council for Scientific Research | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020130100097BA | ||
| 536 | |a Detalles de la financiación: PICT 2015-0672, PICT 2015-2761, PICT 2014-1022 | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 11220150100303CO | ||
| 536 | |a Detalles de la financiación: Mariano C. Gonzaĺ ez Lebrero received his degree in Chemistry in 2001 from the School of Sciences of the University of Buenos Aires and a doctoral degree from the same university in 2006. He is currently a Professor in the Inorganic, Analytical and Physical Chemistry Department of the School of Sciences of the University of Buenos Aires and a researcher at the Institute of Physical Chemistry of Materials, Environment and Energy (INQUIMAE) of the National Research Council of Argentina (CONICET). He is the leader of the LIO Project, a DFT and RT-TDDFT code for highly efficient QM− MM simulations using GPUs. | ||
| 536 | |a Detalles de la financiación: This research was supported by grants from the Universidad de Buenos Aires (UBACYT 20020130100097BA) and Agencia Nacional de Promocioń Cientifí ca y Tecnologicá (PICT 2015-0672, PICT 2014-1022, and PICT 2015-2761) and CONICET Grant 11220150100303CO. N.O.F., U.N.M., and F.R. gratefully acknowledge CONICET for doctoral fellowships. We acknowledge Amendra Fernando and Leila Morzan for their artistic contributions. | ||
| 593 | |a Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II C1428EHA, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a BIOLOGY |
| 690 | 1 | 0 | |a NUCLEAR MAGNETIC RESONANCE |
| 690 | 1 | 0 | |a SPECTROSCOPIC ANALYSIS |
| 690 | 1 | 0 | |a COMPLEX ENVIRONMENTS |
| 690 | 1 | 0 | |a COMPUTATIONAL SPECTROSCOPY |
| 690 | 1 | 0 | |a HISTORICAL EVOLUTIONS |
| 690 | 1 | 0 | |a MULTI-SCALE |
| 690 | 1 | 0 | |a PREDICTIVE POWER |
| 690 | 1 | 0 | |a QUANTUM-CLASSICAL |
| 690 | 1 | 0 | |a SSBAUER SPECTROSCOPIES |
| 690 | 1 | 0 | |a STATE OF THE ART |
| 690 | 1 | 0 | |a PARAMAGNETIC RESONANCE |
| 700 | 1 | |a Alonso De Armiño, D.J. | |
| 700 | 1 | |a Foglia, N.O. | |
| 700 | 1 | |a Ramírez, F. | |
| 700 | 1 | |a González Lebrero, M.C. | |
| 700 | 1 | |a Scherlis, D.A. | |
| 700 | 1 | |a Estrin, D.A. | |
| 773 | 0 | |d American Chemical Society, 2018 |g v. 118 |h pp. 4071-4113 |k n. 7 |p Chem. Rev. |x 00092665 |w (AR-BaUEN)CENRE-7 |t Chemical Reviews | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045202559&doi=10.1021%2facs.chemrev.8b00026&partnerID=40&md5=4fdc9e451a30c5779d824a90710288f3 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/acs.chemrev.8b00026 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00092665_v118_n7_p4071_Morzan |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092665_v118_n7_p4071_Morzan |y Registro en la Biblioteca Digital |
| 961 | |a paper_00092665_v118_n7_p4071_Morzan |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 77962 | ||