Dynamics of partially thermalized solutions of the Burgers equation
The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Physical Society
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08230caa a22008177a 4500 | ||
|---|---|---|---|
| 001 | PAPER-17296 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204829.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85041510125 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Clark Di Leoni, P. | |
| 245 | 1 | 0 | |a Dynamics of partially thermalized solutions of the Burgers equation |
| 260 | |b American Physical Society |c 2018 | ||
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Kraichnan, R.H., Chen, S., Is there a statistical mechanics of turbulence? (1989) Physica D, 37, p. 160 | ||
| 504 | |a Lee, T.D., On some statistical properties of hydrodynamical and magneto-hydrodynamical fields (1952) Q. Appl. Math., 10, p. 69 | ||
| 504 | |a Kraichnan, R.H., Inertial ranges in two-dimensional turbulence (1967) Phys. Fluids, 10, p. 1417 | ||
| 504 | |a Ting, A.C., Matthaeus, W.H., Montgomery, D., Turbulent relaxation processes in magnetohydrodynamics (1986) Phys. Fluids, 29, p. 3261 | ||
| 504 | |a Cichowlas, C., Bonaïti, P., Debbasch, F., Brachet, M., Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows (2005) Phys. Rev. Lett., 95, p. 264502 | ||
| 504 | |a Krstulovic, G., Mininni, P.D., Brachet, M.E., Pouquet, A., Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows (2009) Phys. Rev. e, 79, p. 056304 | ||
| 504 | |a Krstulovic, G., Brachet, M.-E., Pouquet, A., Alfvén waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics (2011) Phys. Rev. e, 84, p. 016410 | ||
| 504 | |a Krstulovic, G., Cartes, C., Brachet, M., Tirapegui, E., Generation and characterization of absolute equilibrium of compressible flows (2009) Int. J. Bifurcation Chaos, 19, p. 3445 | ||
| 504 | |a Krstulovic, G., Brachet, M., Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross-Pitaevskii equation (2011) Phys. Rev. e, 83, p. 066311 | ||
| 504 | |a Zhu, J.-Z., Isotropic polarization of compressible flows (2016) J. Fluid Mech., 787, p. 440 | ||
| 504 | |a Zhu, J.-Z., Hammett, G.W., Gyrokinetic statistical absolute equilibrium and turbulence (2010) Phys. Plasmas, 17, p. 122307 | ||
| 504 | |a Dmitruk, P., Mininni, P.D., Pouquet, A., Servidio, S., Matthaeus, W.H., Magnetic field reversals and long-time memory in conducting flows (2014) Phys. Rev. e, 90, p. 043010 | ||
| 504 | |a Prasath, S.G.G., Fauve, S., Brachet, M., Dynamo action by turbulence in absolute equilibrium (2014) Europhys. Lett., 106, p. 29002 | ||
| 504 | |a Teitelbaum, T., Mininni, P.D., Thermalization and free decay in surface quasigeostrophic flows (2012) Phys. Rev. e, 86, p. 016323 | ||
| 504 | |a Ray, S.S., Frisch, U., Nazarenko, S., Matsumoto, T., Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations (2011) Phys. Rev. e, 84, p. 016301 | ||
| 504 | |a Lax, P.D., Levermore, C.D., The zero dispersion limit for the Korteweg-de Vries KdV equation (1979) Proc. Natl. Acad. Sci. USA, 76, p. 3602 | ||
| 504 | |a Goodman, J., Lax, P.D., On dispersive difference schemes. i (1988) Commun. Pure Appl. Math., 41, p. 591 | ||
| 504 | |a Hou, T.Y., Lax, P.D., Dispersive approximations in fluid dynamics (1991) Commun. Pure Appl. Math., 44, p. 1 | ||
| 504 | |a Majda, A.J., Timofeyev, I., Remarkable statistical behavior for truncated Burgers Hopf dynamics (2000) Proc. Natl. Acad. Sci. USA, 97, p. 12413 | ||
| 504 | |a Venkataraman, D., Ray, S.S., The onset of thermalization in finite-dimensional equations of hydrodynamics: Insights from the Burgers equation (2017) Proc. R. Soc. A, 473, p. 20160585 | ||
| 504 | |a Feng, P., Zhang, J., Cao, S., Prants, S.V., Liu, Y., Thermalized solution of the Galerkin-truncated Burgers equation: From the birth of local structures to thermalization (2017) Commun. Nonlinear Sci. Numer. Simul., 45, p. 104 | ||
| 504 | |a Bec, J., Khanin, K., Burgers turbulence (2007) Phys. Rep., 447, p. 1 | ||
| 504 | |a Buzzicotti, M., Biferale, L., Frisch, U., Ray, S.S., Intermittency in fractal Fourier hydrodynamics: Lessons from the Burgers equation (2016) Phys. Rev. e, 93, p. 033109 | ||
| 504 | |a Frisch, U., Matsumoto, T., Bec, J., Singularities of Euler flow? Not out of the blue! (2003) J. Stat. Phys., 113, p. 761 | ||
| 504 | |a Gibbon, J.D., The three-dimensional Euler equations: Where do we stand? (2008) Physica D, 237, p. 1894 | ||
| 504 | |a Clark Di Leoni, P., Cobelli, P.J., Mininni, P.D., Dmitruk, P., Matthaeus, W.H., Quantification of the strength of inertial waves in a rotating turbulent flow (2014) Phys. Fluids, 26, p. 035106 | ||
| 504 | |a Clark Di Leoni, P., Mininni, P.D., Brachet, M.E., Helicity, topology, and Kelvin waves in reconnecting quantum knots (2016) Phys. Rev. A, 94, p. 043605 | ||
| 520 | 3 | |a The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments. © 2018 American Physical Society. |l eng | |
| 536 | |a Detalles de la financiación: European Research Council | ||
| 536 | |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 2011-1529, 20020130100738BA, PICT, 2015-3530 | ||
| 536 | |a Detalles de la financiación: European Research Council, 339032 | ||
| 536 | |a Detalles de la financiación: Seventh Framework Programme | ||
| 536 | |a Detalles de la financiación: The authors acknowledge financial support from Grant No. ECOS-Sud A13E01. P.C.dL. and P.D.M. acknowledge support from UBACYT Grant No. 20020130100738BA and PICT Grants No. 2011-1529 and No. 2015-3530. P.C.dL. acknowledges funding from the European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No. 339032. APPENDIX: | ||
| 593 | |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina | ||
| 593 | |a Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy | ||
| 593 | |a Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, Sorbonne Universités; Université Paris Diderot, Sorbonne Paris-Cité, CNRS, 24 Rue Lhomond, Paris, 75005, France | ||
| 690 | 1 | 0 | |a DATA FLOW ANALYSIS |
| 690 | 1 | 0 | |a BURGERS EQUATIONS |
| 690 | 1 | 0 | |a FINITE DIMENSIONAL |
| 690 | 1 | 0 | |a INVISCID FLOWS |
| 690 | 1 | 0 | |a LOCALIZED STRUCTURES |
| 690 | 1 | 0 | |a SPATIOTEMPORAL ANALYSIS |
| 690 | 1 | 0 | |a THERMALIZATION |
| 690 | 1 | 0 | |a THERMALIZATION PROCESS |
| 690 | 1 | 0 | |a TRANSIENT SOLUTIONS |
| 690 | 1 | 0 | |a PARTIAL DIFFERENTIAL EQUATIONS |
| 700 | 1 | |a Mininni, P.D. | |
| 700 | 1 | |a Brachet, M.E. | |
| 773 | 0 | |d American Physical Society, 2018 |g v. 3 |k n. 1 |p Phys. Rev. Fluids |x 2469990X |t Physical Review Fluids | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041510125&doi=10.1103%2fPhysRevFluids.3.014603&partnerID=40&md5=70264dae654ba26b56e0b14af9d994c2 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevFluids.3.014603 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_2469990X_v3_n1_p_ClarkDiLeoni |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2469990X_v3_n1_p_ClarkDiLeoni |y Registro en la Biblioteca Digital |
| 961 | |a paper_2469990X_v3_n1_p_ClarkDiLeoni |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 78249 | ||