Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation
Nanotubular TiO2 coatings prepared by anodic oxidation of titanium were evaluated for the first time in the photocatalytic Cr(VI) reduction in the presence of EDTA. Small nanotubes (SN) were prepared by using aqueous hydrofluoric acid as electrolyte, and long nanotubes (LN) were made by using an eth...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Elsevier Ltd
2018
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 13518caa a22014777a 4500 | ||
---|---|---|---|
001 | PAPER-17346 | ||
003 | AR-BaUEN | ||
005 | 20240930144908.0 | ||
008 | 180614s2018 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85028946161 | |
030 | |a MRBUA | ||
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Vera, M.L. | |
245 | 1 | 0 | |a Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation |
260 | |b Elsevier Ltd |c 2018 | ||
270 | 1 | 0 | |m Litter, M.I.; Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, Argentina; email: marta.litter@gmail.com |
504 | |a Riaz, U., Ashraf, S.M., Kashyap, J., (2015) Mater. Res. Bull., 71, pp. 75-90 | ||
504 | |a Robert, D., Keller, V., Keller, N., Immobilization of a semiconductor photocatalyst on solid supports: methods, materials, and applications (2013) Photocatalysis and Water Purification. From Fundamentals to Recent Applications, pp. 145-178. , P. Pichat Wiley-VCH Weinheim | ||
504 | |a Pang, Y.L., Lim, S., Ong, H.C., Chong, W.T., (2014) Appl. Catal. A, 481, pp. 127-142 | ||
504 | |a Albu, S.P., Ghicov, A., Aldabergenova, S., Drechsel, P., Le Clere, D., Thompson, G.E., Macak, J.M., Schmuki, P., (2008) Adv. Mater., 20, pp. 4135-4139 | ||
504 | |a Grimes, C.A., Mor, G.K., TiO2 Nanotubes Arrays, Synthesis, Properties and Applications (2009), Springer New York; Lee, S.-Y., Park, S.-J., (2013) J. Ind. Eng. Chem., 19, pp. 1761-1769 | ||
504 | |a Nakata, K., Fujishima, A., (2012) J. Photochem. Photobiol. C, 13, pp. 169-189 | ||
504 | |a Stodolny, M., Zagrodnik, R., Nowaczyk, G., Jurga, S., (2017) Mater. Res. Bull., 94, pp. 335-341 | ||
504 | |a Liao, A.-Z., Wang, C.-W., Chen, J.-B., Zhang, X.-Q., Li, Y., Wang, J., (2015) Mater. Res. Bull., 70, pp. 988-994 | ||
504 | |a Pichat, P., (2014) Molecules, 19, pp. 15075-15087 | ||
504 | |a Zalnezhad, E., Maleki, E., Banihashemian, S.M., Park, J.W., Kim, Y.B., Sarraf, M., Sarhan, A.A.D.M., Ramesh, S., (2016) Mater. Res. Bull., 78, pp. 179-185 | ||
504 | |a Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C., (2001) J. Mater. Res., 16 (12), pp. 3331-3334 | ||
504 | |a Paramasivam, I., Jha, H., Liu, N., Schmuki, P., (2012) Small, 8 (20), pp. 3073-3103 | ||
504 | |a Oh, H.-J., Kim, I.-K., Jang, K.-W., Lee, J.-H., Lee, S., Chi, C.-S., (2012) Met. Mater. Int., 18 (4), pp. 673-677 | ||
504 | |a Jaroenworaluck, A., Regonini, D., Bowen, C.R., Stevens, R., Allsopp, D., (2007) J. Mater. Sci., 42, pp. 6729-6734 | ||
504 | |a Raja, K.S., Gandhi, T., Misra, M., (2007) Electrochem. Commun., 9, pp. 1069-1076 | ||
504 | |a Regonini, D., Bowen, C.R., Jaroenworaluck, A., Stevens, R., (2013) Mater. Sci. Eng. R, 74 (12), pp. 377-406 | ||
504 | |a Bonato, M., Ragnarsdottir, K.V., Allen, G.C., (2012) Water Air Soil Pollut., 223 (7), pp. 3845-3857 | ||
504 | |a Marien, C.B.D., Cottineau, T., Robert, D., Drogui, P., (2016) Appl. Catal., B: Environ., 194, pp. 1-6 | ||
504 | |a Hua, Z., Dai, Z., Bai, X., Ye, Z., Gu, H., Huang, X., (2015) J. Hazard. Mater., 293, pp. 112-121 | ||
504 | |a Mazierski, P., Nischk, M., Golkowska, M., Lisowski, W., Gazda, M., Winiarski, M., Klimczuk, T., Zaleska-Medynska, A., (2016) Appl. Catal., B: Environ., 196, pp. 77-88 | ||
504 | |a Oh, H.-J., Lee, J.-H., Kim, Y.-J., Suh, S.-J., Lee, J.-H., Chi, C.-S., (2008) Appl. Catal., B: Environ., 84, pp. 142-147 | ||
504 | |a Erol, M., Dikici, T., Toparli, M., Celik, E., (2014) J. Alloys Compd., 604, pp. 66-72 | ||
504 | |a Lin, C.J., Yu, Y.H., Liou, Y.H., (2009) Appl. Catal., B: Environ., 93, pp. 119-125 | ||
504 | |a Bian, H., Wang, Y., Yuan, B., Cui, J., Shu, X., Wu, Y., Zhang, X., Adeloju, S., (2013) New J. Chem., 37, pp. 752-760 | ||
504 | |a Lee, W.H., Lai, C.W., Abd Hamid, S.B., (2015) Materials, 8, pp. 2139-2153 | ||
504 | |a Fang, D., Luo, Z., Huang, K., Lagoudas, D.C., (2011) Appl. Surf. Sci., 257, pp. 6451-6461 | ||
504 | |a Oh, H.-J., Hock, R., Schurr, R., Hölzing, A., Chi, C.-S., (2013) J. Phys. Chem. Solids, 74, pp. 708-715 | ||
504 | |a Zeng, X., Gan, Y.X., Clark, E., Su, L., (2011) J. Alloys Compd., 509, pp. L221-L227 | ||
504 | |a Yan, X., Ohno, T., Nishijima, K., Abe, R., Ohtani, B., (2006) Chem. Phys. Lett., 429, pp. 606-610 | ||
504 | |a Mills, A., (2012) Appl. Catal., B: Environ., 128, pp. 144-149 | ||
504 | |a Ollis, D., Gomes Silva, C., Faria, J., (2015) Catal. Today, 240A, pp. 80-85 | ||
504 | |a Litter, M.I., (1999) Appl. Catal., B: Environ., 23 (2), pp. 89-114 | ||
504 | |a Litter, M.I., (2009) Adv. Chem. Eng., 36, pp. 37-67 | ||
504 | |a Litter, M.I., Quici, N., (2014) New Advances of Heterogeneous Photocatalysis for Treatment of Toxic Metals and Arsenic, pp. 145-167. , B.I. Kharisov O.V. Kharissova H.V. Rasika Dias John Wiley & Sons Hoboken Ch. 9 | ||
504 | |a Litter, M.I., (2015) Pure Appl. Chem., 87 (6), pp. 557-567 | ||
504 | |a Litter, M.I., Quici, N., Meichtry, J.M., Senn, A.M., Photocatalytic removal of metallic and other inorganic pollutants (2016) Photocatalysis: Applications, pp. 35-71. , D.D. Dionysiou G. Li Puma J. Ye J. Schneider D. Bahnemann Royal Society London Ch. 2 | ||
504 | |a Kleiman, A., Márquez, A., Vera, M.L., Meichtry, J.M., Litter, M.I., (2011) Appl. Catal., B: Environ., 101 (3), pp. 676-681 | ||
504 | |a Vera, M.L., Leyva, G., Litter, M.I., Nanosc, J., (2017) Nanotech., 17 (7), pp. 4946-4954 | ||
504 | |a Traid, H.D., Vera, M.L., Ares, A.E., Litter, M.I., (2017) Mater. Chem. Phys., 191, pp. 106-113 | ||
504 | |a Vera, M.L., Preparación de fotocatalizadores de TiO2 soportados para su uso en potabilización de aguas (2008), Master Thesis in Materials Science and Technology, Instituto Sábato, CNEA-UNSAM, Bs.As; Meichtry, J.M., Colbeau-Justin, C., Custo, G., Litter, M.I., (2014) Appl. Catal., B: Environ., 144, pp. 189-195 | ||
504 | |a Litter, M.I., Quici, N., Meichtry, J.M., Montesinos, V.N., Photocatalytic treatment of inorganic materials with TiO2 nanoparticles (2016) Encyclopedia of Nanoscience and Nanotechnology, , H.S. Nalwa American Scientific Publishers Valencia, California (in press) | ||
504 | |a Montesinos, V.N., Salou, C., Meichtry, J.M., Colbeau-Justin, C., Litter, M.I., (2016) Photochem. Photobiol. Sci., 15, pp. 228-234 | ||
504 | |a Meichtry, J.M., Colbeau-Justin, C., Custo, G., Litter, M.I., (2014) Catal. Today, 224, pp. 236-243 | ||
504 | |a Rasband, W., ImageJ U.S. National Institutes of Health (2014), Bethesda Maryland, USA 〈http://imagej.nih.gov/ij/〉; ASTM D1687-12. Standard Test Methods for Chromium in Water. A-Photometric Diphenyl-carbohydrazide; Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., (2006) Sol. Energy Mater. Sol. Cells, 90, pp. 2011-2075 | ||
504 | |a Berger, S., Hahn, R., Roy, P., Schmuki, P., (2010) Phys. Status Solidi B, 247 (10), pp. 2424-2435 | ||
504 | |a Yasuda, K., Macak, J.M., Berger, S., Ghicov, A., Schmuki, P., (2007) J. Electrochem. Soc., 154 (9), pp. C472-C478 | ||
504 | |a Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., Grimes, C.A., (2007) J. Phys. Chem. C, 111, pp. 14992-14997 | ||
504 | |a Regonini, D., Satka, A., Allsopp, D.W.E., Jaroenworaluck, A., Stevens, R., Bowen, C.R., (2009) J. Nanosci. Nanotech., 9, pp. 4410-4416 | ||
504 | |a So, S., Lee, K., Schmuki, P., (2012) J. Am. Chem. Soc., 134, pp. 11316-11318 | ||
504 | |a Murphy, A.B., (2007) Sol. Energy Mater. Sol. Cells, 91 (14), pp. 1326-1337 | ||
504 | |a Mizukoshi, Y., Ohtsu, N., Semboshi, S., Masahashi, N., (2009) Appl. Catal., B: Environ., 91 (1), pp. 152-156 | ||
504 | |a Chang, Y.-H., Liu, C.-M., Cheng, H.-E., Chen, C., (2013) ACS Appl. Mater. Interfaces, 5, pp. 3549-3555 | ||
504 | |a Varghese, O.K., Gong, D., Paulose, M., Grimes, C.G., Dickey, E.C., (2003) J. Mater. Res., 18, pp. 156-165 | ||
504 | |a Lai, Y., Sun, L., Chen, Y., Zhuang, H., Lin, C., Chin, J.W., (2006) J. Electrochem. Soc., 153 (7), pp. D123-D127 | ||
504 | |a Criado, J., Real, C., (1983) Faraday Trans., 179 (12), pp. 2765-2771 | ||
504 | |a Reidy, D.J., Holmes, J.D., Morris, M.A., (2006) J. Eur. Ceram. Soc., 26, pp. 1527-1534 | ||
504 | |a Hanaor, D.A.H., Sorrell, C.C., (2011) J. Mater. Sci., 46, pp. 855-874 | ||
504 | |a Smith, Y.R., Kar, A., Subramanian, V., (2009) Ind. Eng. Chem. Res., 48, pp. 10268-10276 | ||
504 | |a Mazzarolo, A., Lee, K., Vicenzo, A., Schmuki, P., (2012) Electrochem. Commun., 22, pp. 162-165 | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a Nanotubular TiO2 coatings prepared by anodic oxidation of titanium were evaluated for the first time in the photocatalytic Cr(VI) reduction in the presence of EDTA. Small nanotubes (SN) were prepared by using aqueous hydrofluoric acid as electrolyte, and long nanotubes (LN) were made by using an ethylene glycol solution containing ammonium fluoride and water. The samples were characterized by scanning electron microscopy, X-ray diffraction and UV–Vis diffuse reflectance spectroscopy. The photocatalytic reactions were performed using [Cr(VI)]0 = 0.8 mM, an EDTA/Cr(VI) molar ratio = 1.25 and pH 2. The photocatalytic activity increased with the applied voltage due to an increase of the average diameter, wall thickness and length of the nanotubes. The most active SN coating yielded 98% of Cr(VI) transformation after 300 min, while all LN samples achieved a complete transformation in the same time or less. The photocatalytic activity was in almost cases higher than that of a P25 supported sample. © 2017 Elsevier Ltd |l eng | |
536 | |a Detalles de la financiación: ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica | ||
536 | |a Detalles de la financiación: PICT-2012-2952, ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica | ||
536 | |a Detalles de la financiación: PICT-2011-0463, ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica | ||
536 | |a Detalles de la financiación: PICT-2011-1378, ANPCyT, Agencia Nacional de Promoción Científica y Tecnológica | ||
536 | |a Detalles de la financiación: CONARE, Consejo Nacional de Rectores | ||
536 | |a Detalles de la financiación: CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas | ||
536 | |a Detalles de la financiación: Beijing Key Discipline Foundation of Condensed Matter Physics | ||
536 | |a Detalles de la financiación: This work was supported by CONICET and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) from Argentina under PICT-2011-0463, PICT-2011-1378 and PICT-2012-2952 grants. The authors thank Daniel Vega from the DRX Laboratory, Department of Condensed Matter Physics (CAC-CNEA) and to Enrique San Román from INQUIMAE-UBA for the DRS. Edgard Henrikson thanks Consejo Interuniversitario Nacional (CIN) of Argentina for a fellowship. Appendix A | ||
593 | |a Instituto de Materiales de Misiones, IMAM (CONICET-UNaM), Félix de Azara 1552, Posadas, Misiones, Argentina | ||
593 | |a Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires, Argentina | ||
593 | |a Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas, Misiones, Argentina | ||
593 | |a Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, Prov. de Buenos Aires, Argentina | ||
593 | |a Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de Gral. San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Prov. de Buenos Aires, Argentina | ||
690 | 1 | 0 | |a ANODIC OXIDATION |
690 | 1 | 0 | |a HETEROGENEOUS PHOTOCATALYSIS |
690 | 1 | 0 | |a HEXAVALENT CHROMIUM |
690 | 1 | 0 | |a TIO2 NANOTUBES |
690 | 1 | 0 | |a CHROMIUM COMPOUNDS |
690 | 1 | 0 | |a COATINGS |
690 | 1 | 0 | |a ELECTROLYTES |
690 | 1 | 0 | |a ETHYLENE |
690 | 1 | 0 | |a ETHYLENE GLYCOL |
690 | 1 | 0 | |a HYDROFLUORIC ACID |
690 | 1 | 0 | |a NANOTUBES |
690 | 1 | 0 | |a OXIDATION |
690 | 1 | 0 | |a PHOTOCATALYSIS |
690 | 1 | 0 | |a SCANNING ELECTRON MICROSCOPY |
690 | 1 | 0 | |a X RAY DIFFRACTION |
690 | 1 | 0 | |a YARN |
690 | 1 | 0 | |a AMMONIUM FLUORIDE |
690 | 1 | 0 | |a DIFFUSE REFLECTANCE SPECTROSCOPY |
690 | 1 | 0 | |a ETHYLENE GLYCOL SOLUTIONS |
690 | 1 | 0 | |a HETEROGENEOUS PHOTOCATALYSIS |
690 | 1 | 0 | |a HEXAVALENT CHROMIUM |
690 | 1 | 0 | |a PHOTOCATALYTIC ACTIVITIES |
690 | 1 | 0 | |a PHOTOCATALYTIC REACTIONS |
690 | 1 | 0 | |a TIO2 NANOTUBES |
690 | 1 | 0 | |a ANODIC OXIDATION |
700 | 1 | |a Traid, H.D. | |
700 | 1 | |a Henrikson, E.R. | |
700 | 1 | |a Ares, Alicia Esther | |
700 | 1 | |a Litter, M.I. | |
773 | 0 | |d Elsevier Ltd, 2018 |g v. 97 |h pp. 150-157 |x 00255408 |w (AR-BaUEN)CENRE-6029 |t Mater Res Bull | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028946161&doi=10.1016%2fj.materresbull.2017.08.013&partnerID=40&md5=0f8cb4510e89d067dcdef9632759d1c0 |x registro |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1016/j.materresbull.2017.08.013 |x doi |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00255408_v97_n_p150_Vera |x handle |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255408_v97_n_p150_Vera |x registro |y Registro en la Biblioteca Digital |
961 | |a paper_00255408_v97_n_p150_Vera |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion |