Optimization and Empirical Modeling of HG-ICP-AES Analytical Technique through Artificial Neural Networks

An artificial neural network technique has been applied to the optimization of a hydride generation-inductively coupled plasma-atomic emission spectrometry (HG-ICP-AES) coupling for the determination of Ge at trace levels. The back propagation of errors net architecture was used. Experimental parame...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Magallanes, J.F
Otros Autores: Smichowski, P., Marrero, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07885caa a22007097a 4500
001 PAPER-1881
003 AR-BaUEN
005 20230518203113.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0035353666 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCISD 
100 1 |a Magallanes, J.F. 
245 1 0 |a Optimization and Empirical Modeling of HG-ICP-AES Analytical Technique through Artificial Neural Networks 
260 |c 2001 
270 1 0 |m Magallanes, J.F.; Unidad de Actividad Química, Centro Atómico Constituyentes, Comn. Nac. de Ener. Atómica, Av. del Libertador 8250, 1429 Buenos Aires, Argentina; email: magallan@cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Smichowski, P., Marrero, J., Comparative Study to Evaluate the Effect of Different Acids on the Determination of Germanium by Hydride Generation-Inductively Coupled Plasma - Atomic Emission Spectrometry (1998) Anal. Chim. Acta, 376, pp. 283-291 
504 |a Nakahara, T., The Determination of Trace Amounts of Tin by Inductively Coupled Ar Plasma-Atomic Emission Spectrometry with Volatile Hydride Method (1983) Appl. Spectrosc., 37, pp. 539-545 
504 |a Farías, S., Smichowski, P., Determination of Germanium at Trace Levels in Environmental Matrices by Chloride Generation-Inductively Coupled Plasma-Atomic Emission Spectrometry (1999) J. Anal. At. Spectrom., 14, pp. 809-814 
504 |a Madrid, Y., Meseguer, J., Bonilla, M., Cámara, C., Lead Hydride Generation in a Lactic Acid-Potassium Dichromate Medium and its Application to the Determination of Lead in Fish, Vegetables and Drink Samples (1990) Anal. Chim. Acta, 237, pp. 181-187 
504 |a Massart, D.L., Vandegiste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., Smeyers-Verbeke, J., (1997) Handbook of Chemometrics and Qualimetrics, (PART A), p. 651. , Vandegiste, B. G. M., Rutan, S. C., Eds.; Elsevier: The Netherlands, Chapter 21 
504 |a Parker L.R., Jr., Tioh, N.H., Barnes, R.M., Optimization Approaches to the Determination of Arsenic and Selenium by Hydride Generation and ICP-AES (1985) Appl. Spectrosc., 39, pp. 45-48 
504 |a Le, X.C., Cullen, W.R., Reimer, K.J., Brindle, I.D., A New Continuous Hydride Generation for the Determination of Arsenic, Antimony and Tin by Hydride Generation Atomic Absorption Spectrometry (1992) Anal. Chim. Acta, 258, pp. 307-315 
504 |a Hilligsoe, B., Hansen, E.H., Application of Factorial Design and Simplex Optimization in the Development of Flow-Injection-Hydride Generation-Graphite Furnace Atomic Absorption Spectrometry (F1-HG-GFAAS) Procedure as Demonstrated for the Determination of Trace Levels of Germanium (1997) Fresenius J. Anal. Chem., 358, pp. 775-781 
504 |a Zupan, J., Gasteiger, J., (1993) Neural Networks for Chemists, , VCH Publishers: New York and Germany 
504 |a Chauvin, Y., Rumelhart, D.E., (1995) Back-propagation: Theory, Architectures, and Applications, , Lawrence Erlbaum Associates, Publishers: Hillsdale, NJ 
504 |a Fu, L.-M., (1994) Neural Networks in Computer Intelligence, , McGraw Hill: Singapore 
504 |a Zupan, J., Movi, M., Ruisánchez, I., Kohonen and Counterpropagation Artificial Neural Networks in Analytical Chemistry (1997) Chemometrics and Intelligent Laboratory Systems, 38, pp. 1-23 
504 |a Cirovic, D.A., Feed-forward Artificial Neural Networks: Applications to Spectroscopy (1997) Trends Anal. Chem., 16, pp. 148-155 
504 |a (1997) Anal. Chim. Acta, 348, pp. 1-568. , Papers Presented at the International Conference on Chemometrics in Analytical Chemistry; Tarragona, Spain, Special 
504 |a Magallanes, J.F., Vázquez, C., Automatic Classification of Steels by Processing Energy-Dispersive X-ray Spectra with Artificial Neural Networks (1998) J. Chem. Inf. Comput. Sci., 38, pp. 605-609 
504 |a Ruisánchez, I., Potokar, P., Zupan, I., Classification of Energy Dispersion X-ray Spectra of Mineralogical Samples by Artificial Neural Networks (1996) J. Chem. Inf. Comput Sci., 36, pp. 214-220 
504 |a Sun, L.-X., Danzer, K., Thiel, G., Classification of Wine Samples by Means of Artificial Neural Networks and Discrimination Analytical Methods (1997) Fresenius J. Anal. Chem., 359, pp. 143-149 
504 |a Lastres, E., Armas, G., Catasús, M., Alpízar, J., García, L., Cerdá, V., Use of Neural Networks in Solving Interferences Caused by Formation of Intermetallic Compounds in Anodic Stripping Voltametry (1997) Electroanalysis, 9, pp. 251-254 
504 |a Caldera, A., Alpízar, J., Estela, J.M., Cerdá, V., Catasús, M., Lastres, E., García, L., Resolution of Highly Overapping Differential Pulse Anodic Stripping Volatametric Signals Using Multicomponent Analysis and Neural Networks (1997) Anal. Chim. Acta, 350, pp. 163-169 
504 |a Jimenez, O., Benito, I., Marina, L.M., Neural Networks as a Tool for Modelling the Retention Behaviour of Dihydropyridines in Micellar Liquid Chromatography (1997) Anal. Chim. Acta, 353, pp. 367-379 
504 |a Goodacre, R., Timmins, É.M., Jones, A., Kell, D.B., Maddock, J., Heginbothom, M.L., Magee, J.T., On Mass Spectrometer Instrument Standarization and Interlaboratory Calibration Transfer Using Neural Networks (1997) Anal. Chim. Acta, 348, pp. 511-532 
504 |a Despagne, F., Massart, L., Neural Networks in Multivariate Calibration (1998) Analyst, 123, pp. 157R-178R 
504 |a Andreae, M.O., Froelich P.N., Jr., Determination of Germanium in Natural Waters by Graphite Furnace Absorption Atomic Spectrometry with Hydride Generation (1981) Anal. Chem., 53, pp. 287-291 
520 3 |a An artificial neural network technique has been applied to the optimization of a hydride generation-inductively coupled plasma-atomic emission spectrometry (HG-ICP-AES) coupling for the determination of Ge at trace levels. The back propagation of errors net architecture was used. Experimental parameters and their relationship have been studied, obtaining a surface response of the system. The results and optimization aspects achieved with the neural network approach have been compared to the "one variable at time" and SIMPLEX methods.  |l eng 
593 |a Unidad de Actividad Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, 1429 Buenos Aires, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Quimicafísica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria de Nuñez, Pabelĺn 2, 1428 Buenos Aires, Argentina 
593 |a Unidad de Actividad Geología, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, 1429 Buenos Aires, Argentina 
690 1 0 |a ARTICLE 
690 1 0 |a BACKPROPAGATION 
690 1 0 |a COMPUTER SOFTWARE 
690 1 0 |a NEURAL NETWORKS 
690 1 0 |a PLASMAS 
690 1 0 |a SPECTROMETRY 
690 1 0 |a FLOW RATE 
690 1 0 |a CHEMICAL ANALYSIS 
700 1 |a Smichowski, P. 
700 1 |a Marrero, J. 
773 0 |d 2001  |g v. 41  |h pp. 824-829  |k n. 3  |p J. Chem. Inf. Comput. Sci.  |x 00952338  |t Journal of Chemical Information and Computer Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035353666&doi=10.1021%2fci000337k&partnerID=40&md5=366140aafcb75f7337d1cf236ed0df72  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ci000337k  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00952338_v41_n3_p824_Magallanes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00952338_v41_n3_p824_Magallanes  |y Registro en la Biblioteca Digital 
961 |a paper_00952338_v41_n3_p824_Magallanes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 62834