Stem water storage and diurnal patterns of water use in tropical forest canopy trees

Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem sto...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Goldstein, G.
Otros Autores: Andrade, J.L, Meinzer, F.C, Holbrook, N.M, Cavelier, J., Jackson, P., Celis, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 1998
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10643caa a22010217a 4500
001 PAPER-19952
003 AR-BaUEN
005 20230518205121.0
008 190411s1998 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0031833384 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLCED 
100 1 |a Goldstein, G. 
245 1 0 |a Stem water storage and diurnal patterns of water use in tropical forest canopy trees 
260 |b Blackwell Publishing Ltd  |c 1998 
270 1 0 |m Meinzer, F.C.; Hawaii Agriculture Research Center, 99-193 Aiea Heights Drive, Aiea, HI 96701, United States; email: meinzer@hawaii.edu 
506 |2 openaire  |e Política editorial 
504 |a Andrade, J.L., Meinzer, F.C., Goldstein, G., Holbrook, N.M., Cavelier, J., Jackson, P., Silvera, K., Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest (1998) Oecologia, , in press 
504 |a Brokaw, N.V.L., Treefalls: Frequency, timing and consequences (1982) The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes, pp. 101-108. , (eds E.G. Leigh, S. Rand & DM Windsor), Smithsonian Institution Press, Washington, DC 
504 |a Dixon, M.A., Grace, J., Tyree, M.T., Concurrent measurements of stem density, leaf and stem water potential, stomatal conductance and cavitation on a sapling of Thuja occidentalis L (1984) Plant, Cell and Environment, 7, pp. 615-618 
504 |a Dye, P.J., Soko, S., Poulter, A.G., Evaluation of the heat pulse velocity method for measuring sap flow in Pinus patula (1996) Journal of Experimental Botany, 47, pp. 975-981 
504 |a Franco-Vizcaino, E., Goldstein, G., Ting, I.P., Comparative gas exchange of leaves and bark in three stem succulents of Baja California (1990) American Journal of Botany, 77, pp. 1272-1278 
504 |a Goldstein, G., Meinzer, F., Monasterio, M., The role of capacitance in the water balance of Andean giant rosette species (1984) Plant Cell and Environment, 7, pp. 179-186 
504 |a Granier, A., Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements (1987) Tree Physiology, 3, pp. 309-320 
504 |a Holbrook, N.M., Stem water Storage (1995) Plant Stems: Physiology and Functional Morphology, pp. 151-174. , (ed. B.L. Gartner), Academic Press, San Diego 
504 |a Holbrook, N.M., Sinclair, T.R., Water balance in the arborescent palm, Sabal palmetto. I. Stem structure, tissue water release properties and leaf epidermal conductance (1992) Plant Cell and Environment, 15, pp. 393-399 
504 |a Holbrook, N.M., Sinclair, T.R., Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage (1992) Plant Cell and Environment, 15, pp. 401-409 
504 |a Jarvis, P.G., Water transfer in plants (1975) Heat and Mass Transfer in the Environment of Vegetation, pp. 369-394. , (eds D.A. deVries & N.K. van Alfen), Scripta Books, Washington D.C 
504 |a Loustau, D., Berbigier, P., Roumagnac, P., Arruda-Pacheco, C., David, J.S., Ferreira, M.I., Pereira, J.S., Tavares, R., Transpiration of a 64-year-old maritime pine stand in Portugal. 1. Seasonal course of water flux through maritime pine (1996) Oecologia, 107, pp. 33-42 
504 |a Meinzer, F., Goldstein, G., Adaptations for water and thermal balance in Andean giant rosette plants (1986) On the Economy of Plant Form and Function, pp. 381-411. , (ed. T.M. Givnish), Cambridge University Press, Cambridge 
504 |a Meinzer, F.C., Goldstein, G., Holbrook, N.M., Jackson, P., Cavelier, J., Stomatal and environmental control of transpiration in a lowland tropical forest tree (1993) Plant, Cell and Environment, 16, pp. 429-436 
504 |a Mencuccini, M., Grace, J., Developmental patterns of above-ground hydraulic conductance in a Scots pine (Pinus sylvestris L.) age sequence (1996) Plant, Cell and Environment, 19, pp. 939-948 
504 |a Nilsen, E.T., Sharifi, M.R., Rundel, P.W., Forseth, I.N., Ehleringer, J.R., Water relations of stem succulent trees in north-central Baja California (1990) Oecologia, 82, pp. 299-303 
504 |a Nobel, P.S., Jordan, P.W., Transpiration stream of desert species: Resistances and capacitances for a C3, a C4, and a CAM plant (1983) Journal of Experimental Botany, 34, pp. 1379-1391 
504 |a Putz, F.E., Milton, K., Tree mortality rates on Barro Colorado Island (1982) The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes, pp. 95-100. , (eds E.G. Leigh, S. Rand & D.M. Windsor), Smithsonian Institution Press, Washington D.C 
504 |a Ryan, M.G., Yoder, B.J., Hydraulic limits to tree height and tree growth (1997) Bioscience, 47, pp. 235-242 
504 |a Schulze, E.-D., Cermak, J., Matyssek, R., Penka, M., Zimmermann, R., Vasicek, F., Gries, W., Kucera, J., Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees - A comparison of xylem flow, porometer and cuvette measurements (1985) Oecologia, 66, pp. 475-483 
504 |a Tyree, M.T., Jarvis, P.G., Water in tissues and cells (1982) Encyclopedia of Plant Physiology, 12 B, pp. 35-77. , (eds O. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler), Springer-Verlag, Berlin 
504 |a Tyree, M.T., Yang, S., Water storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms: The contribution of capillary water and cavitation (1990) Planta, 182, pp. 420-426 
504 |a Waring, R.H., Running, S.W., Sapwood water storage: Its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir (1978) Plant, Cell and Environment, 1, pp. 131-140 
504 |a Waring, R.H., Sylvester, W.B., Variation in foliar 13C values within the crowns of Pinus radiata trees (1994) Tree Physiology, 14, pp. 1203-1213 
504 |a Waring, R.H., Whitehead, D., Jarvis, P.G., The contribution of stored water to transpiration in Scots pine (1979) Plant, Cell and Environment, 2, pp. 309-317 
504 |a Zang, D., Beadle, C.L., White, D.A., Variation of sapflow velocity in Eucalyptus globulus with position in sapwood and use of a correction coefficient (1996) Tree Physiology, 16, pp. 697-703 
504 |a Zimmermann, M.H., (1983) Xylem Structure and the Ascent of Sap, , Springer-Verlag, Berlin 
520 3 |a Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d-1 in a 0.20-m-diameter individual of Cecropia longipes to 54 kg d-1 in a 1-02-m-diameter individual of Anacardium excelsum, representing 9-15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0.1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.  |l eng 
593 |a Department of Botany, University of Hawaii, 3190 Maile way, Honolulu, HI 96822, United States 
593 |a Hawaii Agriculture Research Center, 99-193 Aiea Heights Drive, Aiea, HI 96701, United States 
593 |a Biological Laboratories, Harvard University, Cambridge, MA 02138, United States 
593 |a Depto. de Ciencias Biológicas, Universidad de los Andes, Bogota, Colombia 
593 |a Department of Biology, University of California, Los Angeles, CA 90024, United States 
593 |a Departamento de Biología, Universidad de, Buenos Aires, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina 
690 1 0 |a CAPACITANCE 
690 1 0 |a SAP FLOW 
690 1 0 |a SEASONAL TROPICAL FOREST 
690 1 0 |a TRANSPIRATION, WATER STORAGE 
690 1 0 |a WATER RELATIONS 
690 1 0 |a DIURNAL VARIATION 
690 1 0 |a SAP FLOW 
690 1 0 |a TROPICAL TREE 
690 1 0 |a WATER STORAGE 
690 1 0 |a WATER USE 
690 1 0 |a ANACARDIUM EXCELSUM 
690 1 0 |a ANACARDIUM EXCELSUM 
690 1 0 |a ANACARDIUM OCCIDENTALE 
690 1 0 |a CECROPIA 
690 1 0 |a CECROPIA LONGIPES 
690 1 0 |a CECROPIA LONGIPES 
690 1 0 |a FICUS INSIPIDA 
690 1 0 |a FICUS INSIPIDA 
690 1 0 |a LUEHEA SEEMANNII 
690 1 0 |a LUEHEA SEEMANNII 
690 1 0 |a SPONDIAS MOMBIN 
690 1 0 |a SPONDIAS MOMBIN 
650 1 7 |2 spines  |a PANAMA 
700 1 |a Andrade, J.L. 
700 1 |a Meinzer, F.C. 
700 1 |a Holbrook, N.M. 
700 1 |a Cavelier, J. 
700 1 |a Jackson, P. 
700 1 |a Celis, A. 
773 0 |d Blackwell Publishing Ltd, 1998  |g v. 21  |h pp. 397-406  |k n. 4  |p Plant Cell Environ.  |x 01407791  |w (AR-BaUEN)CENRE-6496  |t Plant, Cell and Environment 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031833384&doi=10.1046%2fj.1365-3040.1998.00273.x&partnerID=40&md5=813ede252fc791b89822e128b323f471  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1046/j.1365-3040.1998.00273.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01407791_v21_n4_p397_Goldstein  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01407791_v21_n4_p397_Goldstein  |y Registro en la Biblioteca Digital 
961 |a paper_01407791_v21_n4_p397_Goldstein  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 80905