A DFT/GIAO/NBO and experimental study of 13C SCSs in 1-X-bicyclo[1.1.1]pentanes

The 13C NMR spectra of 24 members of a series of 1-X-bicyclo[1.1.1]pentanes were measured. SCSs on 13C1 were found to linearly correlated with those on 13C3, although the former correspond to deshielding effects and the latter to shielding effects. Even though the 13C1 SCSs follow the same trend as...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Della, E.W
Otros Autores: Lochert, I.J, Peralta, J.E, Contreras, Rubén Horacio
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2000
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09676caa a22010817a 4500
001 PAPER-21042
003 AR-BaUEN
005 20250204092952.0
008 190411s2000 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0034195903 
030 |a MRCHE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Della, E.W. 
245 1 2 |a A DFT/GIAO/NBO and experimental study of 13C SCSs in 1-X-bicyclo[1.1.1]pentanes 
260 |b John Wiley and Sons Ltd  |c 2000 
270 1 0 |m Della, E.W.; Department of Chemistry, Flinders University, Bedford Park, SA 5108, Australia; email: ern.della@flinders.edu.au 
504 |a Marchand, A.P., (1982) Methods in Stereochemical Analysis, 1. , Marchand AP (ed.) Verlag Chemie International: Deerfield Beach, FL 
504 |a Marshall, J.L., (1982) Methods in Stereochemical Analysis, 1. , Marchand AP (ed.) Verlag Chemie International: Deerfield Beach, FL 
504 |a Breitmaier, E., Voelter, W., (1987) Carbon-13 NMR Spectroscopy: High-Resolution Methods and Applications in Organic Chemistry and Biochemistry (3rd Edn), , Verlag Chemie International, New York 
504 |a Pihlaja, K., Kleinpeter, E., (1994) Carbon 13 NMR Chemical Shifts in Structural and Stereochemical Analysis, , Verlag Chemie International, New York 
504 |a Krivdin, L.B., Della, E.W., (1991) Prog. Nucl. Magn. Reson. Spectrosc., 23, p. 301 
504 |a Chiang, J.F., Bauer, S.H., (1970) J. Am. Chem. Soc., 92, p. 1614 
504 |a Wiberg, K.B., Haddad, C.M., Sieber, S., Schleyer, P.V.R., (1992) J. Am. Chem. Soc., 114, p. 5820 
504 |a Wiberg, K.B., Connor, D.S., (1966) J. Am. Chem. Soc., 88, p. 4437 
504 |a Della, E.W., Cotsaris, E., Hine, P.T., Pigou, P.E., (1981) Aust. J. Chem., 34, p. 913 
504 |a Della, E.W., Pigou, P.E., (1982) J. Am. Chem. Soc., 104, p. 862 
504 |a Barfield, M., Della, E.W., Pigou, P.E., Walter, S.R., (1982) J. Am. Chem. Soc., 104, p. 3549 
504 |a Della, E.W., Pigou, P.E., (1984) J. Am. Chem. Soc., 106, p. 1085 
504 |a Barfield, M., Facelli, J.C., Della, E.W., Pigou, P.E., (1984) J. Magn. Reson., 59, p. 282 
504 |a Barfield, M., Della, E.W., Pigou, P.E., (1984) J. Am. Chem. Soc., 106, p. 5051 
504 |a Della, E.W., Kasum, B., Kirkbride, K.P., (1987) J. Am. Chem. Soc., 109, p. 2746 
504 |a Della, E.W., Gangodawila, H., Pigou, P.E., (1988) J. Org. Chem., 53, p. 592 
504 |a Della, E.W., Gangodawila, H., (1989) Aust. J. Chem., 42, p. 1485 
504 |a Della, E.W., Janowski, W., Kasum, B., Kirkbride, K.P., Shirley, N.J., (1992) Heteroatom Chem., 2, p. 33 
504 |a Adcock, W., Krstic, A.R., (1992) Tetrahedron Lett., 33, p. 7379 
504 |a Della, E.W., Pigou, P.E., Taylor, D.K., Krivdin, L.B., Contreras, R.H., (1993) Aust. J. Chem., 46, p. 63 
504 |a Lazzeretti, P., Malagoli, M., Zanasi, R., Della, E.W., Lochert, I.J., Giribet, C.J., Ruiz De Azua, M.C., Contreras, R.H., (1995) J. Chem. Soc., Faraday Trans., 91, p. 4031 
504 |a Della, E.W., Lochert, I.J., Peruchena, N.M., Aucar, G.A., Contreras, R.H., (1996) J. Phys. Org. Chem., 9, p. 168 
504 |a Adcock, W., Krstic, A.R., (1997) Magn. Reson. Chem., 35, p. 663 
504 |a Diz, A.C., Giribet, C.G., Ruiz De Azúa, C.C., Contreras, R.H., (1990) Int. J. Quantum Chem., 37, p. 663 
504 |a Contreras, R.H., Ruiz De Azúa, M.C., Giribet, C.G., Aucar, G.A., Lobayan De Bonczok, R., (1993) J. Mol. Struct. (Theochem), 284, p. 249 
504 |a Aucar, G.A., Ruiz De Azúa, M.C., Giribet, C.G., Contreras, R.H., (1990) J. Mol. Struct. (Theochem), 205, p. 79 
504 |a Dewar, M.J.S., (1984) J. Am. Chem. Soc., 106, p. 669 
504 |a Hameka, H.F., (1958) Mol. Phys., 1, p. 203 
504 |a Ditchfield, R., (1972) J. Chem. Phys., 56, p. 5688 
504 |a Ditchfield, R., (1974) Mol. Phys., 27, p. 789 
504 |a Cheeseman, J.R., Trucks, G.W., Keith, T.A., Frisch, M.J., (1996) J. Chem. Phys., 104, p. 5497 
504 |a Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, p. 899 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Pople, J.A., (1995) Gaussian 94, Revision D.4., , Gaussian: Pittsburgh, PA 
504 |a Wolinski, K., Hinton, J.F., Pulay, P., (1990) J. Am. Chem. Soc., 112, p. 8251 
504 |a Levy, G.C., (1974) Topics in Carbon-13 NMR Spectroscopy, 1. , Wiley: New York 
504 |a Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098 
504 |a Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785 
504 |a Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648 
504 |a Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244 
504 |a Spiesecke, H., Schneider, W.G., (1961) J. Chem. Phys., 35, p. 722 
504 |a Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO Version 3.1, , code included in the Gaussian 94 suite of programs, Ref. 25 
504 |a Pouchert, C.J., Behnke, J., (1993) The Aldrich Library of 13C and 1H FT NMK Spectra, (1st Edn), , Aldrich: WI 
504 |a Breitmaier, E., Hass, G., Voelter, W., (1979) Atlas of Carbon-13 NMR Data, , Heyden: London 
504 |a Adcock, W., Abeywickrema, A.N., (1982) J. Org. Chem., 47, p. 2951 
504 |a Adcock, W., Abeywickrema, A.N., Iyer, V.S., Kok, G.B., (1986) Magn. Reson. Chem., 24, p. 213 
504 |a Della, E.W., Head, N.J., (1995) J. Org. Chem., 60, p. 5303 
504 |a Dewar, M.J.S., Dougherty, R.C., (1975) The PMO Theory of Organic Chemistry, , Plenum Press: New York 
504 |a Giribet, C.G., Ruiz De Azúa, M.C., Gómez, S.B., Botek, E.L., Contreras, R.H., Adcock, W., Della, E.W., Lochert, I.J., (1998) J. Comput. Chem., 19, p. 181 
504 |a Cheremisin, A.A., Schastnev, P.V., (1980) J. Magn. Reson., 40, p. 459 
504 |a Kaupp, M., Malkina, O.L., (1998) J. Chem. Phys., 108, p. 3648. , and references cited therein 
504 |a Cieplak, A.S., (1981) J. Am. Chem. Soc., 103, p. 4540 
504 |a Schindler, M., Kutzelnigg, W., (1982) J. Chem. Phys., 76, p. 1919 
504 |a Kutzelnigg, W., Fleischer, U., Schindler, M., (1990) NMR Basic Principles and Progress, 23, p. 165. , Diehl P, Fluck E, Günther H, Kosfeld R, Selig J (eds) Springer: Berlin 
504 |a Barfield, M., (1993) J. Am. Chem. Soc., 115, p. 6916 
504 |a Eliel, E.L., Pietrusiewicz, K.M., (1980) Org. Magn. Reson., 13, p. 193 
504 |a Wiberg, K.B., Barth, D.E., Pratt, W.E., (1977) J. Am. Chem. Soc., 99, p. 4286 
506 |2 openaire  |e Política editorial 
520 3 |a The 13C NMR spectra of 24 members of a series of 1-X-bicyclo[1.1.1]pentanes were measured. SCSs on 13C1 were found to linearly correlated with those on 13C3, although the former correspond to deshielding effects and the latter to shielding effects. Even though the 13C1 SCSs follow the same trend as α-SCSs in other types of substrates, they are significantly smaller. In order to provide an insight into the different intramolecular interactions that define such a trend, theoretical studies that include SCSs calculated at the GIAO B3LYP/6-311G** level, electron delocalization analysis within the NBO approach at the same level and electrostatic interaction effects on chemical shifts were carried out. Important halogen heavy-atom effects on C3 were observed, suggesting that the spin-orbit interaction is transmitted through space between the bridgehead carbon atoms. Additionally, in a few members of the series X = H, F, CH3, NH2, OCH3, CN, COOH, COCH3), theoretical calculations of the substituent chemical shifts, 13C SCSs, were carried out with particular reference to the C1 position. These theoretical calculations included: (a) full geometry optimizations, (b) magnetic shielding constant calculations using the GIAO (gauge-included atomic orbitals) method within the DFT (density functional theory) approach and (c) natural bond orbital (NBO) analysis of intramolecular charge transfer interactions. Copyright © 2000 John Wiley & Sons, Ltd.  |l eng 
593 |a Department of Chemistry, Flinders University, Bedford Park, SA 5042, Australia 
593 |a Departamento de Física, Fac. de Cie. Exactas y Narurales, Universidad de Buenos Aires, P.1 (1428) Buenos Aires, Argentina 
593 |a Department of Chemistry, Flinders University, Bedford Park, SA 5108, Australia 
593 |a Def. Sci. and Technol. Organisation, Weapons Systems Division, P.O. Box 1500, Salisbury, SA 5108, Australia 
690 1 0 |a 13C NMR 
690 1 0 |a BICYCLO[1.1.1]PENTANES 
690 1 0 |a NMR 
690 1 0 |a SUBSTITUENT CHEMICAL SHIFTS 
700 1 |a Lochert, I.J. 
700 1 |a Peralta, J.E. 
700 1 |a Contreras, Rubén Horacio 
773 0 |d John Wiley and Sons Ltd, 2000  |g v. 38  |h pp. 395-402  |k n. 6  |p Magn. Reson. Chem.  |x 07491581  |w (AR-BaUEN)CENRE-972  |t Magnetic Resonance in Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034195903&doi=10.1002%2f1097-458X%28200006%2938%3a6%3c395%3a%3aAID-MRC656%3e3.0.CO%3b2-N&partnerID=40&md5=8a7207c90a8528bcaa8220e8ea42bc29  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/1097-458X(200006)38:6<395::AID-MRC656>3.0.CO;2-N  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07491581_v38_n6_p395_Della  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07491581_v38_n6_p395_Della  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_07491581_v38_n6_p395_Della  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI