Ethanol steam reforming on Ni/Al2O3 catalysts: Effect of Mg addition

Ethanol steam reforming is an interesting alternative for hydrogen production since ethanol can be renewably obtained. Use of lamellar double hydroxides (LDHs) as precursors of nickel catalysts leads to highly dispersed metal particles in an aluminium structure. In this sense, a Ni(II)Al(III) cataly...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vizcaíno, A.J
Otros Autores: Arena, P., Baronetti, G., Carrero, A., Calles, J.A, Laborde, M.A, Amadeo, Nora Elvira
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07135caa a22011177a 4500
001 PAPER-22371
003 AR-BaUEN
005 20240930083500.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-47049093025 
030 |a IJHED 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Vizcaíno, A.J. 
245 1 0 |a Ethanol steam reforming on Ni/Al2O3 catalysts: Effect of Mg addition 
260 |c 2008 
270 1 0 |m Vizcaíno, A.J.; Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; email: arturo.vizcaino@urjc.es 
504 |a International Energy Agency. World energy outlook 2004. Paris: IEA Publications; 2004. 〈http://www.iea.org//textbase/nppdf/free/2004/weo2004.pdf〉; Momirlan, M., Veziroglu, T.N., The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet (2005) Int J Hydrogen Energy, 30, pp. 795-802 
504 |a Gosselink, J.W., Pathways to a more sustainable production of energy: sustainable hydrogen-a research objective for shell (2002) Int J Hydrogen Energy, 27, pp. 1125-1129 
504 |a Haryanto, A., Fernando, S., Murali, N., Adhikari, S., Current status of hydrogen production techniques by steam reforming of ethanol: a review (2005) Energy Fuels, 19, pp. 2098-2106 
504 |a Cavallaro, S., Chiodo, V., Vita, A., Freni, S., Hydrogen production by auto-thermal reforming of ethanol on Rh / Al2 O3 catalyst (2003) J Power Sources, 123, pp. 10-16 
504 |a Mariño, F., Baronetti, G., Jobbagy, M., Laborde, M., Cu - Ni - K / γ - Al2 O3 supported catalysts for ethanol steam reforming: formation of hydrotalcite-type compounds as a result of metal-support interaction (2003) Appl Catal A Gen, 238, pp. 41-54 
504 |a Comas, J., Mariño, F., Laborde, M., Amadeo, N., Bio-ethanol steam reforming on Ni / Al2 O3 catalyst (2004) Chem Eng J, 98, pp. 61-68 
504 |a Vizcaíno AJ, Carrero A, Calles JA. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. Int J Hydrogen Energy 2007;32:1450-61; Frusteri, F., Freni, S., Chiodo, V., Spadaro, L., Di Blasi, O., Bonura, G., Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell (2004) Appl Catal A Gen, 270, pp. 1-7 
504 |a Lisboa, J.S., Santos, D.C.R.M., Passos, F.B., Noronha, F.B., Influence of the addition of promoters to steam reforming catalysts (2005) Catal Today, 101, pp. 15-21 
504 |a Auprêtre, F., Descorme, C., Duprez, D., Casanave, D., Uzio, D., Ethanol steam reforming over Mgx Ni1 - x Al2 O3 spinel oxide-supported Rh catalysts (2005) J Catal, 233, pp. 464-477 
506 |2 openaire  |e Política editorial 
520 3 |a Ethanol steam reforming is an interesting alternative for hydrogen production since ethanol can be renewably obtained. Use of lamellar double hydroxides (LDHs) as precursors of nickel catalysts leads to highly dispersed metal particles in an aluminium structure. In this sense, a Ni(II)Al(III) catalyst was synthesized from a LDH precursor and tested in ethanol steam reforming. Although this catalyst presents high stability, acidity of alumina promotes carbon deposition from ethylene through ethanol dehydration. For this reason, in order to neutralize acid sites, a series of catalysts was prepared by Mg addition to LDH precursors varying Mg/Ni ratio. The effect of Mg/Ni ratio in the catalyst on coke formation during ethanol steam reforming was studied, resulting in significant reduction of the amount of deposited carbon for Mg/Ni ratio higher than 0.1. Moreover, Mg addition increases the catalytic activity due to lower ethylene formation, which competes with ethanol for the same Ni active sites. © 2007 International Association for Hydrogen Energy.  |l eng 
536 |a Detalles de la financiación: Umweltbundesamt 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors wish to acknowledge the financial support received from CONICET, ANPCyT and UBA. 
593 |a Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain 
593 |a Chemical Engineering Department, School of Engineering, Universidad de Buenos Aires, Pabellon Industrias, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
650 1 7 |2 spines  |a CARBON 
690 1 0 |a CARBON DEPOSITS 
690 1 0 |a ETHANOL 
690 1 0 |a HYDROGEN 
690 1 0 |a STEAM REFORMING 
690 1 0 |a ADDITION REACTIONS 
690 1 0 |a ALUMINUM 
690 1 0 |a ALUMINUM CLADDING 
690 1 0 |a CATALYSIS 
690 1 0 |a CATALYST ACTIVITY 
690 1 0 |a CATALYSTS 
690 1 0 |a ETHYLENE 
690 1 0 |a GAS FUEL MANUFACTURE 
690 1 0 |a HYDROGEN 
690 1 0 |a HYDROGEN PRODUCTION 
690 1 0 |a MAGNESIUM PRINTING PLATES 
690 1 0 |a NICKEL 
690 1 0 |a NICKEL ALLOYS 
690 1 0 |a STEAM 
690 1 0 |a STEAM ENGINEERING 
690 1 0 |a ACID SITES 
690 1 0 |a ACTIVE SITES 
690 1 0 |a AL(III) 
690 1 0 |a ALUMINIUM STRUCTURES 
690 1 0 |a CARBON DEPOSITION 
690 1 0 |a CATALYTIC ACTIVITIES 
690 1 0 |a COKE FORMATION 
690 1 0 |a DEPOSITED CARBON 
690 1 0 |a DOUBLE HYDROXIDES 
690 1 0 |a ETHANOL DEHYDRATION 
690 1 0 |a ETHANOL STEAM REFORMING 
690 1 0 |a HIGH STABILITY 
690 1 0 |a HYDROGEN ENERGY 
690 1 0 |a IN ORDER 
690 1 0 |a INTERNATIONAL ASSOCIATION 
690 1 0 |a METAL PARTICLE (MP) 
690 1 0 |a NICKEL CATALYSTS 
690 1 0 |a SIGNIFICANT REDUCTION 
690 1 0 |a ETHANOL 
690 1 0 |a ALUMINUM 
690 1 0 |a ALUMINUM OXIDE 
690 1 0 |a CATALYSTS 
690 1 0 |a DEHYDRATION 
690 1 0 |a DEPOSITION 
690 1 0 |a ETHANOL 
690 1 0 |a ETHYLENE 
690 1 0 |a HYDROGEN 
690 1 0 |a NICKEL COMPOUNDS 
690 1 0 |a PRINTING PLATES 
690 1 0 |a STEAM 
700 1 |a Arena, P. 
700 1 |a Baronetti, G. 
700 1 |a Carrero, A. 
700 1 |a Calles, J.A. 
700 1 |a Laborde, M.A. 
700 1 |a Amadeo, Nora Elvira 
773 0 |d 2008  |g v. 33  |h pp. 3489-3492  |k n. 13  |p Int J Hydrogen Energy  |x 03603199  |w (AR-BaUEN)CENRE-5264  |t International Journal of Hydrogen Energy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-47049093025&doi=10.1016%2fj.ijhydene.2007.12.012&partnerID=40&md5=920a666994f98879974624d62e22e643  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijhydene.2007.12.012  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03603199_v33_n13_p3489_Vizcaino  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03603199_v33_n13_p3489_Vizcaino  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_03603199_v33_n13_p3489_Vizcaino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion