Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast

The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules, and ultimately drives the phenotype and functi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bodenmiller, B.
Otros Autores: Wanka, S., Kraft, C., Urban, J., Campbell, D., Pedrioli, P.G, Gerrits, B., Picotti, P., Lam, H., Vitek, O., Brusniak, M.-Y, Roschitzki, B., Zhang, C., Shokat, K.M, Schlapbach, R., Colman-Lerner, A., Nolan, G.P, Nesvizhskii, A.I, Peter, M., Loewith, R., Mering, C.V, Aebersold, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18695caa a22019457a 4500
001 PAPER-22761
003 AR-BaUEN
005 20230518205421.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-78650632764 
024 7 |2 cas  |a phosphatase, 9013-05-2; protein kinase, 9026-43-1; phosphotransferase, 9031-09-8, 9031-44-1; Phosphoproteins; Phosphoric Monoester Hydrolases, 3.1.3.-; Phosphotransferases, 2.7.- 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bodenmiller, B. 
245 1 0 |a Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast 
260 |c 2010 
270 1 0 |m Aebersold, R.; Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; email: aebersold@imsb.biol.ethz.ch 
506 |2 openaire  |e Política editorial 
504 |a Cohen, P., Protein kinases-the major drug targets of the twenty-first century? (2002) Nat. Rev. Drug Discov., 1, pp. 309-315 
504 |a Hunter, T., Signaling-2000 and beyond (2000) Cell, 100, pp. 113-127 
504 |a Irish, J.M., Hovland, R., Krutzik, P.O., Perez, O.D., Bruserud Ø, Gjertsen, B.T., Nolan, G.P., Single cell profiling of potentiated phospho-protein networks in cancer cells (2004) Cell, 118, pp. 217-228 
504 |a Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., Zerial, M., Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis (2005) Nature, 436, pp. 78-86 
504 |a Savage, D.G., Antman, K.H., Imatinib mesylate-A new oral targeted therapy (2002) N. Engl. J. Med., 346, pp. 683-693 
504 |a Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Snyder, M., Global analysis of protein phosphorylation in yeast (2005) Nature, 438 (7068), pp. 679-684. , DOI 10.1038/nature04187 
504 |a Linding, R., Jensen, L.J., Ostheimer, G.J., Van Vugt, M.A., Jorgensen, C., Miron, I.M., Diella, F., Pawson, T., Systematic discovery of in vivo phosphorylation networks (2007) Cell, 129, pp. 1415-1426 
504 |a Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G., Mukherjee, P., Silva, A.C., Krogan, N.J., Functional organization of the S. cerevisiae phosphorylation network (2009) Cell, 136, pp. 952-963 
504 |a Rishton, G.M., Failure and success in modern drug discovery: Guiding principles in the establishment of high probability of success drug discovery organizations (2005) Med. Chem., 1, pp. 519-527 
504 |a Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., Morgan, D.O., Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution (2009) Science, 325, pp. 1682-1686 
504 |a Huber, A., Bodenmiller, B., Uotila, A., Stahl, M., Wanka, S., Gerrits, B., Aebersold, R., Loewith, R., Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis (2009) Genes Dev., 23, pp. 1929-1943 
504 |a Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., Mann, M., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks (2006) Cell, 127, pp. 635-648 
504 |a Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Linton, L.M., International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921 
504 |a Manning, G., Whyte, D.B., Martinez, R., Hunter, T., Sudarsanam, S., The protein kinase complement of the human genome (2002) Science, 298, pp. 1912-1934 
504 |a Mager, W.H., Winderickx, J., Yeast as a model for medical and medicinal research (2005) Trends Pharmacol. Sci., 26, pp. 265-273 
504 |a Lindquist, S., Krobitsch, S., Li, L., Sondheimer, N., Investigating protein conformationbased inheritance and disease in yeast (2001) Philos. Trans. R. Soc. Lond. B Biol. Sci., 356, pp. 169-176 
504 |a Outeiro, T.F., Muchowski, P.J., Molecular genetics approaches in yeast to study amyloid diseases (2004) J. Mol. Neurosci., 23, pp. 49-60 
504 |a Hunter, T., Plowman, G.D., The protein kinases of budding yeast: Six score and more (1997) Trends Biochem. Sci., 22, pp. 18-22 
504 |a Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human (1999) Physiol. Rev., 79, pp. 143-180 
504 |a Simon, J.A., Bedalov, A., Yeast as a model system for anticancer drug discovery (2004) Nat. Rev. Cancer, 4, pp. 481-492 
504 |a Bishop, A.C., Ubersax, J.A., Petsch, D.T., Matheos, D.P., Gray, N.S., Blethrow, J., Shimizu, E., Shokat, K.M., A chemical switch for inhibitor-sensitive alleles of any protein kinase (2000) Nature, 407, pp. 395-401 
504 |a Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B., Aebersold, R., Reproducible isolation of distinct, overlapping segments of the phosphoproteome (2007) Nat. Methods, 4, pp. 231-237 
504 |a Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P., Jorgensen, T.J., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns (2005) Mol. Cell. Proteomics, 4, pp. 873-886 
504 |a Mueller, L.N., Rinner, O., Schmidt, A., Letarte, S., Bodenmiller, B., Brusniak, M.Y., Vitek, O., Muller, M., SuperHirn-A novel tool for high resolution LC-MS-based peptide/protein profiling (2007) Proteomics, 7, pp. 3470-3480 
504 |a Brusniak, M.Y., Bodenmiller, B., Campbell, D., Cooke, K., Eddes, J., Garbutt, A., Lau, H., Watts, J.D., Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics (2008) BMC Bioinformatics, 9, p. 542 
504 |a Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search (2002) Anal. Chem., 74, pp. 5383-5392 
504 |a Elias, J.E., Gygi, S.P., Target-decoy search strategy for increased confidence in largescale protein identifications by mass spectrometry (2007) Nat. Methods, 4, pp. 207-214 
504 |a Smyth, G., Linear models and empirical Bayes methods for assessing differential expression in microarray experiments (2004) Stat. Appl. Genet. Mol. Biol., 3. , Article 3 
504 |a Benjamini, Y., Hochberg, Y., Controlling the false discovery rate-A practical and powerful approach to multiple testing (1995) J. R. Statist. Soc. Series B Stat. Methodol., 57, pp. 289-300 
504 |a Bodenmiller, B., Malmstrom, J., Gerrits, B., Campbell, D., Lam, H., Schmidt, A., Rinner, O., Aebersold, R., PhosphoPep-A phosphoproteome resource for systems biology research in Drosophila Kc167 cells (2007) Mol. Syst. Biol., 3, p. 139 
504 |a Schwartz, D., Chou, M.F., Church, G.M., (2009) Predicting protein post-translational modifications using meta-Analysis of proteome scale data sets. Mol. Cell. Proteomics, 8, pp. 365-379 
504 |a Breitkreutz, B.J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R., Tyers, M., The BioGRID Interaction Database: 2008 update (2008) Nucleic Acids Res., 36, pp. D637-D640 
504 |a Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Von Mering, C., STRING 8-A global view on proteins and their functional interactions in 630 organisms (2009) Nucleic Acids Res., 37, pp. D412-D416 
504 |a Mok, J., Kim, P.M., Lam, H.Y., Piccirillo, S., Zhou, X., Jeschke, G.R., Sheridan, D.L., Turk, B.E., (2010) Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal., 3. , ra12 
504 |a Stark, C., Su, T.C., Breitkreutz, A., Lourenco, P., Dahabieh, M., Breitkreutz, B.J., Tyers, M., Sadowski, I., PhosphoGRID: A database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae (2010) Database (Oxford ), p. 2010. , bap026 
504 |a Ubersax, J.A., Woodbury, E.L., Quang, P.N., Paraz, M., Blethrow, J.D., Shah, K., Shokat, K.M., Morgan, D.O., Targets of the cyclin-dependent kinase Cdk1 (2003) Nature, 425, pp. 859-864 
504 |a Hirata, Y., Andoh, T., Asahara, T., Kikuchi, A., Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes (2003) Mol. Biol. Cell, 14, pp. 302-312 
504 |a Hinnebusch, A.G., Natarajan, K., Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress (2002) Eukaryot. Cell, 1, pp. 22-32 
504 |a Sterner, D.E., Lee, J.M., Hardin, S.E., Greenleaf, A.L., The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex (1995) Mol. Cell. Biol, 15, pp. 5716-5724 
504 |a Grose, J.H., Smith, T.L., Sabic, H., Rutter, J., Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling (2007) EMBO J., 26, pp. 4824-4830 
504 |a Hillenmeyer, M.E., Fung, E., Wildenhain, J., Pierce, S.E., Hoon, S., Lee, W., Proctor, M., Giaever, G., The chemical genomic portrait of yeast: Uncovering a phenotype for all genes (2008) Science, 320, pp. 362-365 
504 |a Ohya, Y., Sese, J., Yukawa, M., Sano, F., Nakatani, Y., Saito, T.L., Saka, A., Morishita, S., High-dimensional and large-scale phenotyping of yeast mutants (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 19015-19020 
504 |a Blacketer, M.J., Koehler, C.M., Coats, S.G., Myers, A.M., Madaule, P., Regulation of dimorphism in Saccharomyces cerevisiae: Involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A (1993) Mol. Cell. Biol., 13, pp. 5567-5581 
504 |a Thomson, M., Gunawardena, J., Unlimited multistability in multisite phosphorylation systems (2009) Nature, 460, pp. 274-277 
504 |a Ashby, W.R., (1956) An Introduction to Cybernetics, , Chapman & Hall Ltd.,London 
504 |a Ashby, W.R., Requisite variety and its implications for the control of complex systems (1958) Cybernetica, 1, pp. 83-99 
504 |a Kimura, M., Evolutionary rate at the molecular level (1968) Nature, 217, pp. 624-626 
504 |a Lange, V., Picotti, P., Domon, B., Aebersold, R., Selected reaction monitoring for quantitative proteomics: A tutorial (2008) Mol. Syst. Biol., 4, p. 222 
504 |a Picotti, P., Aebersold, R., Domon, B., The implications of proteolytic background for shotgun proteomics (2007) Mol. Cell. Proteomics, 6, pp. 1589-1598 
504 |a Picotti, P., Lam, H., Campbell, D., Deutsch, E.W., Mirzaei, H., Ranish, J., Domon, B., Aebersold, R., A database of mass spectrometric assays for the yeast proteome (2008) Nat. Methods, 5, pp. 913-914 
504 |a Bodenmiller, B., Campbell, D., Gerrits, B., Lam, H., Jovanovic, M., Picotti, P., Schlapbach, R., Aebersold, R., PhosphoPep-A database of protein phosphorylation sites in model organisms (2008) Nat. Biotechnol., 26, pp. 1339-1340 
504 |a Acknowledgments: We thank the whole team of the Functional Genomics Center Zurich (FGCZ) for fruitful discussions. We thank C. Zheng, Department of Statistics, Purdue University, for help with use and interpretation of the Limma package. Funding: This project was funded in part by ETH Zurich; Federal funds from the National Heart, Lung, and Blood Institute, NIH, under contract no. N01-HV-28179; the PhosphoNetX project of SystemsX.ch, the Swiss initiative for systems biology; and the European Research Council (grant ERC-2008-AdG 233226) to R.A. Work at the FGCZ and at the von Mering laboratory has been supported by the University Research Priority Program Systems Biology and Functional Genomics of the University of Zurich. B.G. is supported by the Bonizzi-Theler Foundation. C.K. is supported by a Marie-Heim Vögtlin fellowship from the Swiss National Science Foundation (SNF) 
520 3 |a The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules, and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequencesand is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery, and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis. © 2008 American Association for the Advancement of Science.  |l eng 
593 |a Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland 
593 |a Zurich PhD Program in Molecular Life Sciences, 8057 Zurich, Switzerland 
593 |a Institute of Molecular Life Sciences, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland 
593 |a Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland 
593 |a Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland 
593 |a Institute for Systems Biology, Seattle, WA 98103, United States 
593 |a Functional Genomics Center Zurich, University Zurich and ETH Zurich, 8057 Zurich, Switzerland 
593 |a Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Hong Kong 
593 |a Departments of Statistics and Computer Science, Purdue University, West Lafayette, IN 47107, United States 
593 |a Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2280, United States 
593 |a Facultad de Ciencias Exactasy Naturales, University of Buenos Aires, C1428EHA Buenos Aires, Argentina 
593 |a Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States 
593 |a Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States 
593 |a Faculty of Science, University of Zurich, 8057 Zurich, Switzerland 
593 |a Scottish Institute for Cell Signalling, Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, United Kingdom 
593 |a Novartis Institute for Biomedical Research, Novartis International, AG, CH-4002 Basel, Switzerland 
690 1 0 |a PHOSPHATASE 
690 1 0 |a PHOSPHOPROTEIN 
690 1 0 |a PROTEIN KINASE 
690 1 0 |a PHOSPHATASE 
690 1 0 |a PHOSPHOPROTEIN 
690 1 0 |a PHOSPHOTRANSFERASE 
690 1 0 |a ARTICLE 
690 1 0 |a CELL GROWTH 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENZYME ACTIVATION 
690 1 0 |a HEMOSTASIS 
690 1 0 |a IN VIVO STUDY 
690 1 0 |a NONHUMAN 
690 1 0 |a PHENOTYPE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN ANALYSIS 
690 1 0 |a PROTEIN PHOSPHORYLATION 
690 1 0 |a PROTEOMICS 
690 1 0 |a SACCHAROMYCES CEREVISIAE 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a BAYES THEOREM 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a GENE DELETION 
690 1 0 |a GENETICS 
690 1 0 |a LIQUID CHROMATOGRAPHY 
690 1 0 |a METABOLISM 
690 1 0 |a METHODOLOGY 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SACCHAROMYCES CEREVISIAE 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a SPECIES DIFFERENCE 
690 1 0 |a TANDEM MASS SPECTROMETRY 
690 1 0 |a EUKARYOTA 
690 1 0 |a SACCHAROMYCES CEREVISIAE 
690 1 0 |a BAYES THEOREM 
690 1 0 |a CHROMATOGRAPHY, LIQUID 
690 1 0 |a GENE DELETION 
690 1 0 |a METABOLIC NETWORKS AND PATHWAYS 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a PHOSPHOPROTEINS 
690 1 0 |a PHOSPHORIC MONOESTER HYDROLASES 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PHOSPHOTRANSFERASES 
690 1 0 |a PROTEOMICS 
690 1 0 |a SACCHAROMYCES CEREVISIAE 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a SPECIES SPECIFICITY 
690 1 0 |a TANDEM MASS SPECTROMETRY 
700 1 |a Wanka, S. 
700 1 |a Kraft, C. 
700 1 |a Urban, J. 
700 1 |a Campbell, D. 
700 1 |a Pedrioli, P.G. 
700 1 |a Gerrits, B. 
700 1 |a Picotti, P. 
700 1 |a Lam, H. 
700 1 |a Vitek, O. 
700 1 |a Brusniak, M.-Y. 
700 1 |a Roschitzki, B. 
700 1 |a Zhang, C. 
700 1 |a Shokat, K.M. 
700 1 |a Schlapbach, R. 
700 1 |a Colman-Lerner, A. 
700 1 |a Nolan, G.P. 
700 1 |a Nesvizhskii, A.I. 
700 1 |a Peter, M. 
700 1 |a Loewith, R. 
700 1 |a Mering, C.V. 
700 1 |a Aebersold, R. 
773 0 |d 2010  |g v. 3  |k n. 153  |p Sci. Signal.  |x 19450877  |t Science Signaling 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650632764&doi=10.1126%2fscisignal.2001182&partnerID=40&md5=f1429fe884b11229541954c9082b96fd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1126/scisignal.2001182  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19450877_v3_n153_p_Bodenmiller  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19450877_v3_n153_p_Bodenmiller  |y Registro en la Biblioteca Digital 
961 |a paper_19450877_v3_n153_p_Bodenmiller  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83714