Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes

Direct electron transfer (ET) of redox proteins immobilized on biomimetic or biocompatible electrodes represents an active field of fundamental and applied research. In this context, several groups have reported for a variety of proteins unexpected distance dependencies of the ET rate, whose origin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvarez-Paggi, D.
Otros Autores: Martín, D.F, Debiase, P.M, Hildebrandt, P., Martí, M.A, Murgida, D.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12973caa a22020657a 4500
001 PAPER-22918
003 AR-BaUEN
005 20230518205432.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77952559245 
024 7 |2 cas  |a cytochrome c, 9007-43-6, 9064-84-0; gold, 7440-57-5; lysine, 56-87-1, 6899-06-5, 70-54-2; protein, 67254-75-5; thiol derivative, 13940-21-1; Cytochromes c, 9007-43-6; Enzymes, Immobilized; Gold, 7440-57-5; Sulfhydryl Compounds 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Alvarez-Paggi, D. 
245 1 0 |a Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes 
260 |c 2010 
270 1 0 |m Martí, M. A.; Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina; email: marcelo@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Cracknell, J.A., Vincent, K.A., Armstrong, F.A., (2008) Chem. Rev., 108, p. 2439 
504 |a Willner, I., Katz, E., (2000) Angew. Chem., Int. Ed., 39, p. 1180 
504 |a Armstrong, F.A., (2005) Curr. Opin. Chem. Biol., 9, p. 110 
504 |a Murgida, D.H., Hildebrandt, P., (2004) Acc. Chem. Res., 37, p. 854 
504 |a Murgida, D.H., Hildebrandt, P., (2008) Chem. Soc. Rev., 37, p. 937 
504 |a Fedurco, M., (2000) Coord. Chem. Rev., 209, p. 263 
504 |a Murgida, D.H., Hildebrandt, P., Wei, J., He, Y.F., Liu, H.Y., Waldeck, D.H., (2004) J. Phys. Chem. B, 108, p. 2261 
504 |a Rivas, L., Murgida, D.H., Hildebrandt, P., (2002) J Phys. Chem. B, 106, p. 4823 
504 |a Kuznetsov, A.M., Ulstrup, J., (1999) Electron Transfer in Chemistry and Biology. An Introduction to the Theory, , 1 ed. Wiley: Chichester 
504 |a Marcus, R.A., (1965) J. Chem. Phys., 43, p. 679 
504 |a Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., (2000) J. Phys. Chem. B, 104, p. 2759 
504 |a Chi, Q.J., Zhang, J.D., Andersen, J.E.T., Ulstrup, J., (2001) J. Phys. Chem. B, 105, p. 4669 
504 |a Davis, K.L., Waldeck, D.H., (2008) J. Phys. Chem. B, 112, p. 12498 
504 |a El Kasmi, A., Wallace, J.M., Bowden, E.F., Binet, S.M., Linderman, R.J., (1998) J. Am. Chem. Soc., 120, p. 225 
504 |a Feng, J.J., Kuhlmann, U., Murgida, D.H., Utesch, T., Mroginski, M., Hildebrandt, P., Weidinger, I., (2008) J. Phys. Chem. B, 112, p. 15202 
504 |a Kranich, A., Naumann, H., Molina-Heredia, F.P., Moore, H.J., Lee, T.R., Lecomte, S., De La Rosa, M.A., Murgida, D.H., (2009) Phys. Chem. Chem. Phys., 11, p. 7390 
504 |a Murgida, D.H., Hildebrandt, P., (2001) J. Am. Chem. Soc., 123, pp. 4062-4068 
504 |a Niki, K., Hardy, W.R., Hill, M.G., Li, H., Sprinkle, J.R., Margoliash, E., Fujita, K., Gray, H.B., (2003) J. Phys. Chem. B, 107, p. 9947 
504 |a Wei, J.J., Liu, H.Y., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., (2002) Angew. Chem., Int. Ed., 41, p. 4700 
504 |a Xu, J.S., Bowden, E.F., (2006) J. Am. Chem. Soc., 128, p. 6813 
504 |a Yue, H.J., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., (2006) J. Phys. Chem. B, 110, p. 19906 
504 |a Zuo, P., Albrecht, T., Barker, P.D., Murgida, D.H., Hildebrandt, P., (2009) Phys. Chem. Chem. Phys., 11, p. 7430 
504 |a Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, p. 12814 
504 |a Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., (2008) J. Am. Chem. Soc., 130, p. 9844 
504 |a Paggi, D.A., Martin, D.F., Kranich, A., Hildebrandt, P., Marti, M.A., Murgida, D.H., (2009) Electrochim. Acta, 54, p. 4963 
504 |a Banci, L., Bertini, I., Huber, J.G., Spyroulias, G.A., Turano, P., (1999) J. Biol. Inorg. Chem., 4, p. 21 
504 |a Bushnell, G.W., Louie, G.V., Brayer, G.D., (1990) J. Mol. Biol., 214, p. 585 
504 |a Case, D.A., Cheatham Iii, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev Jr., A., Woods, R., (2005) J. Computat. Chem., 26, p. 1668 
504 |a Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., Lebrero, M.C.G., Estrin, D.A., (2006) Phys. Chem. Chem. Phys., 8, p. 5611 
504 |a Rai, B., Sathish, P., Malhotra, C.P., Pradip, Ayappa, K.G., (2004) Langmuir, 20, p. 3138 
504 |a Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, p. 1578 
504 |a Ataka, K., Heberle, J., (2004) J. Am. Chem. Soc., 126, p. 9445 
504 |a Park, S., Schulten, K., (2004) J. Chem. Phys., 120, p. 5946 
504 |a Onufriev, A., Bashford, D., Case, D.A., (2004) Proteins: Struct. Funct. Bioinf., 55, p. 383 
504 |a Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, A., Haak, J.R., (1984) J. Chem. Phys., 81, p. 3684 
504 |a Koppenol, W.H., Rush, J.D., Mills, J.D., Margoliash, E., (1991) Mol. Biol. Evol., 8, p. 545 
504 |a Beratan, D.N., Onuchic, J.N., Betts, J.N., Bowler, B.E., Gray, H.B., (1990) J. Am. Chem. Soc., 112, p. 7915 
504 |a Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., (1992) Science, 258, p. 1740 
504 |a Araci, Z.O., Runge, A.F., Doherty Iii, W.J., Saavedra, S.S., (2008) J. Am. Chem. Soc., 130, p. 1572 
504 |a De Biase, P.M., Paggi, D.A., Doctorovich, F., Hildebrandt, P., Estrin, D.A., Murgida, D.H., Marti, M.A., (2009) J. Am. Chem. Soc., 131, p. 16248 
504 |a Pelletier, H., Kraut, J., (1992) Science, 258, p. 1748 
504 |a Lange, C., Hunte, C., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 2800 
504 |a Roberts, V.A., Pique, M.E., (1999) J. Biol. Chem., 274, p. 38051 
504 |a Cheung, E., Taylor, K., Kornblatt, J.A., English, A.M., McLendon, G., Miller, J.R., (1986) Proc. Natl. Acad. Sci. U.S.A., 83, p. 1330 
504 |a Michel, B., Bosshard, H.R., (1989) Biochemistry, 28, p. 244 
504 |a Michel, B., Mauk, A.G., Bosshard, H.R., (1989) FEBS Lett., 243, p. 149 
504 |a Michel, B., Proudfoot, A.E.I., Wallace, C.J.A., Bosshard, H.R., (1989) Biochemistry, 28, p. 456 
504 |a Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., Wilson, M.T., (1985) EMBO J., 4, p. 2365 
504 |a Capitanio, N., Capitanio, G., Demarinis, D.A., De Nitto, E., Massari, S., Papa, S., (1996) Biochemistry, 35, p. 10800 
504 |a Hazzard, J.T., McLendon, G., Cusanovich, M.A., Tollin, G., (1988) Biochim. Biophys. Res. Comm., 151, p. 429 
504 |a Heacock, D.H., (1993) J. Biol. Chem., 268, p. 27171 
504 |a Schlarb-Ridley, B.G., Bendall, D.S., Howe, C.J., (2003) Biochemistry, 42, p. 4057 
504 |a Hunte, C., Solmaz, S., Lange, C., (2002) BBA-Bioenergetics, 1555, p. 21 
504 |a Sadeghi, S.J., Valetti, F., Cunha, C.A., Rompo, M.J., Soares, C.M., Gilardi, G., (2000) J. Biol. Inorg. Chem., 5, p. 730 
520 3 |a Direct electron transfer (ET) of redox proteins immobilized on biomimetic or biocompatible electrodes represents an active field of fundamental and applied research. In this context, several groups have reported for a variety of proteins unexpected distance dependencies of the ET rate, whose origin remains largely speculative and controversial, but appears to be a quite general phenomenon. Here we have employed molecular dynamics (MD) simulations and electron pathway analyses to study the ET properties of cytochrome c (Cyt) electrostatically immobilized on Au coated by carboxyl-terminated alkylthiols. The MD simulations and concomitant binding energy calculations allow identification of preferred binding configurations of the oxidized and reduced Cyt which are established via different lysine residues and, thus, correspond to different orientations and dipole moments. Calculations of the electronic coupling matrices for the various Cyt/self-assembled monolayer (SAM) complexes indicate that the thermodynamically preferred protein orientations do not coincide with the orientations of optimum coupling. These findings demonstrate that the ET of the immobilized Cyt is controlled by an interplay between protein dynamics and tunneling probabilities. Protein dynamics exerts two level of tuning on the electronic coupling via reorientation (coarse) and low amplitude thermal fluctuations (fine). Upon operating the Au support as an electrode, electric-field-dependent alignment of the protein dipole moment becomes an additional determinant for the protein dynamics and thus for the overall ET rate. The present results provide a consistent molecular description of previous (spectro)electrochemical data and allow conclusions concerning the coupling of protein dynamics and ET of Cyt in physiological complexes. © 2010 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina 
593 |a Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany 
690 1 0 |a ACTIVE FIELD 
690 1 0 |a ALKYLTHIOLS 
690 1 0 |a APPLIED RESEARCH 
690 1 0 |a BINDING CONFIGURATION 
690 1 0 |a BIOMIMETIC COMPLEX 
690 1 0 |a CONCOMITANT BINDING 
690 1 0 |a CYTOCHROME C 
690 1 0 |a DIRECT ELECTRON TRANSFER 
690 1 0 |a ELECTROCHEMICAL DATA 
690 1 0 |a ELECTRON TRANSFER DYNAMICS 
690 1 0 |a ELECTRONIC COUPLING 
690 1 0 |a ENERGY CALCULATION 
690 1 0 |a LOW-AMPLITUDE 
690 1 0 |a LYSINE RESIDUES 
690 1 0 |a MD SIMULATION 
690 1 0 |a MOLECULAR BASIS 
690 1 0 |a MOLECULAR DESCRIPTIONS 
690 1 0 |a MOLECULAR DYNAMICS SIMULATIONS 
690 1 0 |a OPTIMUM COUPLING 
690 1 0 |a PATHWAY ANALYSIS 
690 1 0 |a PROTEIN DYNAMICS 
690 1 0 |a PROTEIN ORIENTATION 
690 1 0 |a REDOX PROTEINS 
690 1 0 |a THERMAL FLUCTUATIONS 
690 1 0 |a TUNNELING PROBABILITIES 
690 1 0 |a AMINO ACIDS 
690 1 0 |a BINDING ENERGY 
690 1 0 |a BIOMIMETICS 
690 1 0 |a DYNAMICS 
690 1 0 |a ELECTRIC DIPOLE MOMENTS 
690 1 0 |a ELECTRON TRANSITIONS 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MONOLAYERS 
690 1 0 |a PROTEINS 
690 1 0 |a CARBOXY TERMINATED ALKYLTHIOL 
690 1 0 |a CYTOCHROME C 
690 1 0 |a GOLD 
690 1 0 |a LYSINE 
690 1 0 |a PROTEIN 
690 1 0 |a SELF ASSEMBLED MONOLAYER 
690 1 0 |a THIOL DERIVATIVE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a BIOMIMETIC MATERIAL 
690 1 0 |a CYTOCHROME C 
690 1 0 |a IMMOBILIZED ENZYME 
690 1 0 |a AMPLITUDE MODULATION 
690 1 0 |a ARTICLE 
690 1 0 |a BINDING AFFINITY 
690 1 0 |a BIOMIMETICS 
690 1 0 |a CALCULATION 
690 1 0 |a CARBOXY TERMINAL SEQUENCE 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CROSS COUPLING REACTION 
690 1 0 |a DIPOLE 
690 1 0 |a ELECTRIC FIELD 
690 1 0 |a ELECTRICITY 
690 1 0 |a ELECTRODE 
690 1 0 |a ELECTRON 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a ENERGY 
690 1 0 |a MATERIAL COATING 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a OXIDATION 
690 1 0 |a PROTEIN ANALYSIS 
690 1 0 |a PROTEIN STABILITY 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a TUNING CURVE 
690 1 0 |a CHEMISTRY 
690 1 0 |a ELECTROCHEMISTRY 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a ENZYME SPECIFICITY 
690 1 0 |a PROTEIN TERTIARY STRUCTURE 
690 1 0 |a STATIC ELECTRICITY 
690 1 0 |a BIOMIMETIC MATERIALS 
690 1 0 |a CYTOCHROMES C 
690 1 0 |a ELECTROCHEMISTRY 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a ENZYMES, IMMOBILIZED 
690 1 0 |a GOLD 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a PROTEIN STRUCTURE, TERTIARY 
690 1 0 |a STATIC ELECTRICITY 
690 1 0 |a SUBSTRATE SPECIFICITY 
690 1 0 |a SULFHYDRYL COMPOUNDS 
690 1 0 |a THERMODYNAMICS 
700 1 |a Martín, D.F. 
700 1 |a Debiase, P.M. 
700 1 |a Hildebrandt, P. 
700 1 |a Martí, M.A. 
700 1 |a Murgida, D.H. 
773 0 |d 2010  |g v. 132  |h pp. 5769-5778  |k n. 16  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952559245&doi=10.1021%2fja910707r&partnerID=40&md5=4fff52a9ec9ba368adb7166525db6103  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja910707r  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v132_n16_p5769_AlvarezPaggi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v132_n16_p5769_AlvarezPaggi  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v132_n16_p5769_AlvarezPaggi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 83871