Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces

For a real square-free multivariate polynomial F, we treat the general problem of finding real solutions of the equation F=0, provided that the real solution set {F=0}ℝ is compact. We allow that the equation F=0 may have singular real solutions. We are going to decide whether this equation has a non...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bank, B.
Otros Autores: Giusti, M., Heintz, J., Lehmann, L., Pardo, L.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15513caa a22011897a 4500
001 PAPER-23486
003 AR-BaUEN
005 20230518205511.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84856216156 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bank, B. 
245 1 0 |a Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces 
260 |c 2012 
270 1 0 |m Heintz, J.; Departamento de Computación, Universidad de Buenos Aires and CONICET, Ciudad Univ., Pab. I, 1428 Buenos Aires, Argentina; email: joos@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aubry, P., Rouillier, F., Safey El Din, M., Real solving for positive dimensional systems (2002) J. Symb. Comput., 34, pp. 543-560 
504 |a Bank, B., Giusti, M., Heintz, J., Mbakop, G.M., Polar varieties, real equation solving, and data structures: the hypersurface case (1997) J. Complex., 13, pp. 5-27 
504 |a Bank, B., Giusti, M., Heintz, J., Mbakop, G.M., Polar varieties and efficient real elimination (2001) Math. Z., 238, pp. 115-144 
504 |a Bank, B., Giusti, M., Heintz, J., Pardo, L.M., Generalized polar varieties and an efficient real elimination procedure (2004) Kybernetika, 40, pp. 519-550 
504 |a Bank, B., Giusti, M., Heintz, J., Pardo, L.M., Generalized polar varieties: geometry and algorithms (2005) J. Complex., 21, pp. 377-412 
504 |a Bank, B., Giusti, M., Heintz, J., Pardo, L.M., On the intrinsic complexity of point finding in real singular hypersurfaces (2009) Inf. Process. Lett., 109, pp. 1141-1144 
504 |a Bank, B., Giusti, M., Heintz, J., Pardo, L.M., Bipolar varieties and real solving of a singular polynomial equation (2010) Jaen J. Approx., 2 (1), pp. 65-77 
504 |a Bank, B., Giusti, M., Heintz, J., Safey El Din, M., Schost, E., On the geometry of polar varieties (2010) Appl. Algebra Eng. Commun. Comput., 21, pp. 33-83 
504 |a Basu, S., Pollack, R., Roy, M.-F., On the combinatorial and algebraic complexity of quantifier elimination (1996) J. ACM, 43, pp. 1002-1045 
504 |a Basu, S., Pollack, R., Roy, M.-F., (2006) Algorithms in Real Algebraic Geometry, , 2nd edn., Berlin: Springer 
504 |a Bochnak, J., Coste, M., Roy, M.-F., (1987) Géométrie Algébrique Réelle, , Berlin: Springer 
504 |a Brasselet, J.P., Milnor classes via polar varieties (2000) Singularities in Algebraic and Analytic Geometry, 266, pp. 181-187. , Contemp. Math, C. G. Melles (Ed.), Providence: AMS 
504 |a Bürgisser, P., Clausen, M., Shokrollahi, M.A., (1997) Algebraic Complexity Theory, 315. , Grundlehren der Mathematischen Wissenschaftenwith the collaboration of Thomas Lickteig, Berlin: Springer 
504 |a Canny, J.F., Some algebraic and geometric computations in PSPACE (1988) ACM Symposium on Theory of Computing (STOC), pp. 460-467 
504 |a Castro, D., Giusti, M., Heintz, J., Matera, G., Pardo, L.M., The hardness of polynomial equation solving (2003) Found. Comput. Math., 3, pp. 347-420 
504 |a Coste, M., Roy, M.-F., Thom's lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets (1988) J. Symb. Comput., 5, pp. 121-129 
504 |a Demazure, M., (1989) Catastrophes Et Bifurcations, , Paris: Ellipses 
504 |a Dubson, A., (1982) Courants sous-analytiques, théorie d'intersection des ensembles analytiques, invariants numériques des singularités et applications, , Thèse d'État, Université Paris VII 
504 |a Durvye, C., Evaluation techniques for zero-dimensional primary decomposition (2009) J. Symb. Comput., 44, pp. 1089-1113 
504 |a Durvye, C., Lecerf, G., A concise proof of the Kronecker polynomial system solver from scratch (2008) Expo. Math., 26, pp. 101-139 
504 |a Fitchas, N., Galligo, A., Morgenstern, J., Algorithmes rapides en séquentiel et en parallèle pour l'élimination des quantificateurs en géométrie élémentaire (1990) Publ. Math. Univ. Paris VII, 32, pp. 103-145. , Structures algébriques ordonnées, Volume I, Sélect. Expos. Sémin., Paris, 1984-1987 
504 |a Fulton, W., (1998) Intersection Theory, 3. , 2nd edn., Ergebnisse der Mathematik und ihrer GrenzgebieteFolge 2, Berlin: Springer 
504 |a Giusti, M., Heintz, J., Kronecker's smart, little black boxes (2001) Foundations of Computational Mathematics, 284, pp. 69-104. , ConferenceOxford, GBJuly 18-28, 1999Lond. Math. Soc. Lect. Note Ser, R. A. DeVore (Ed.), Cambridge: Cambridge University Press 
504 |a Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M., When polynomial equation systems can be "solved" fast? (1995) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 948, pp. 205-231. , LNCS, G. Cohen, M. Giusti, and T. Mora (Eds.), Berlin: Springer 
504 |a Giusti, M., Heintz, J., Hägele, K., Morais, J.E., Montaña, J.L., Pardo, L.M., Lower bounds for Diophantine approximations (1997) J. Pure Appl. Algebra, 117-118, pp. 277-317 
504 |a Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M., Le rôle des structures de données dans les problèmes d'élimination (1997) C.R. Acad. Sci. Paris Sér. I Math., 325, pp. 1223-1228 
504 |a Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M., Straight-line programs in geometric elimination theory (1998) J. Pure Appl. Algebra, 124, pp. 101-146 
504 |a Giusti, M., Lecerf, G., Salvy, B., A Gröbner free alternative for polynomial system solving (2001) J. Complex., 17, pp. 154-211 
504 |a Grigor'ev, D., Vorobjov, N., Solving systems of polynomial inequalities in subexponential time (1988) J. Symb. Comput., 5, pp. 37-64 
504 |a Hägele, K., Montaña, J.L., (1997) Polynomial random test for the equivalence of integers given by arithmetic circuits, p. 4. , Depto. de Matematicas, Estadistica y Computacion, Universidad de Cantabria 
504 |a Heintz, J., Definability and fast quantifier elimination in algebraically closed fields (1983) Theor. Comput. Sci., 24, pp. 239-277 
504 |a Heintz, J., Roy, M.-F., Solernó, P., On the complexity of semialgebraic sets (1989) IFIP Information Processing, 89, pp. 293-298. , G. X. Ritter (Ed.), Elsevier: Amsterdam 
504 |a Heintz, J., Roy, M.-F., Solernó, P., Complexité du principe de Tarski-Seidenberg (1989) C.R. Acad. Sci., Paris, Sér. I Math, 309, pp. 825-830 
504 |a Heintz, J., Roy, M.-F., Solernó, P., Sur la complexité du principe de Tarski-Seidenberg (1990) Bull. Soc. Math. Fr., 18, pp. 101-126 
504 |a Heintz, J., Krick, T., Puddu, S., Sabia, J., Waissbein, A., Deformation techniques for efficient polynomial equation solving (2000) J. Complex., 16, pp. 70-109 
504 |a Heintz, J., Matera, G., Waissbein, A., On the time-space complexity of geometric elimination procedures (2001) Appl. Algebra Eng. Commun. Comput., 11, pp. 239-296 
504 |a Henry, J.P.G., Merle, M., Limites d'espaces tangents et transversalité de variétés polaires (1982) Algebraic Geometry, Proc. Int. Conf., La Rabida/Spain 1981, 961, pp. 189-199. , Lect. Notes Math 
504 |a Krick, T., Straight-line programs in polynomial equation solving (2004) Foundations of Computational Mathematics: Minneapolis 2002 (FoCM 2002), 312, pp. 96-136. , London Mathematical Society Lecture Note Ser, F. Cucker (Ed.), Cambridge: Cambridge University Press 
504 |a Lê, D.T., Teissier, B., Variétés polaires locales et classes de Chern des variétés singulières (1981) Ann. Math. (2), 114, pp. 457-491 
504 |a Lecerf, G., Quadratic Newton iteration for systems with multiplicity (2002) Found. Comput. Math., 2, pp. 247-293 
504 |a Lecerf, G., Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers (2003) J. Complex., 19, pp. 564-596 
504 |a Lecerf, G., Kronecker software package, , http://www.math.uvsq.fr/~lecerf/software/index.html 
504 |a Lehmann, L., (2007) Wavelet-Konstruktion als Anwendung der algorithmischen reellen algebraischen Geometrie, , http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger&id=27952, Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II 
504 |a Lehmann, L., Waissbein, A., Wavelets and semi-algebraic sets (2001) WAIT 2001, Anales JAIIO, 30, pp. 139-155. , M. Frias and J. Heintz (Eds.) 
504 |a Mork, H.C., Piene, R., Polars of real singular plane curves (2008) Algorithms in Algebraic Geometry, 146, pp. 99-115. , Minneapolis, MN, USASeptember 18-22, 2006The IMA Volumes in Mathematics and Its Applicationsbased on the workshop, A. Dickenstein (Ed.), New York: Springer 
504 |a Piene, R., Polar classes of singular varieties (1978) Ann. Sci. Éc. Norm. Supér. (4), 11, pp. 247-276 
504 |a Renegar, J., A faster PSPACE algorithm for the existential theory of the reals (1988) Proc. 29th Annual IEEE Symposium on the Foundation of Computer Science, pp. 291-295 
504 |a Renegar, J., On the computational complexity and geometry of the first order theory of the reals (1992) J. Symb. Comput., 13, pp. 255-352 
504 |a Safey El Din, M., (2005) Finding sampling points on real hypersurfaces is easier in singular situations, , Preprint Université Paris VII 
504 |a Safey El Din, M., Schost, E., Polar varieties and computation of one point in each connected component of a smooth real algebraic set (2003) Proc. ISSAC 2003, pp. 224-231. , J. R. Sendra (Ed.), New York: ACM 
504 |a Safey El Din, M., Schost, E., Properness defects and projections and computation of at least one point in each connected component of a real algebraic set (2004) J. Discrete Comput. Geom., 32, pp. 417-430 
504 |a Schost, E., Computing parametric geometric resolutions (2003) Appl. Algebra Eng. Commun. Comput., 13, pp. 349-393 
504 |a Severi, F., Sulle intersezioni delle varieta algebriche e sopra i loro caratteri e singolarità proiettive (1903) Torino Mem. (2), 52, pp. 61-118 
504 |a Severi, F., La serie canonica e la teoria delle serie principali di gruppi di punti sopra una superficie algebrica (1932) Comment. Math. Helv., 4, pp. 268-326 
504 |a Shafarevich, I.R., (1994) Basic Algebraic Geometry. 1: Varieties in Projective Space, , Berlin: Springer 
504 |a Solernó, P., Effective Lojasiewicz inequalities in semialgebraic geometry (1991) Appl. Algebra Eng. Commun. Comput., 2, pp. 1-14 
504 |a Spivak, M., (1965) Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus, , Amsterdam: Benjamins 
504 |a Teissier, B., Variétés polaires II., Multiplicités polaires, sections planes, et conditions de Whitney (1982) Algebraic Geometry, 961, pp. 314-491. , Proc. Int. Conf.La Rabida/Spain1981Lect. Notes Math 
504 |a Teissier, B., Quelques points de l'histoire des variétés polaires, de Poncelet à nos jours (1988) Sémin. Anal., 4, p. 12. , Univ. Blaise Pascal 1987-1988 
504 |a Todd, J.A., The geometrical invariants of algebraic loci (1937) Proc. Lond. Math. Soc., 43, pp. 127-138 
504 |a Todd, J.A., The arithmetical invariants of algebraic loci (1937) Proc. Lond. Math. Soc., 43, pp. 190-225 
504 |a Vogel, W., (1984) Lectures on Results on Bézout's Theorem, 74. , Lectures on Mathematics and PhysicsNotes by D.P. Patil, published for Tata Institute of Fundamental Research, Berlin: Springer 
504 |a von zur Gathen, J., Parallel arithmetic computations: a survey. Mathematical foundations of computer science (1986) Proc. 12th Symp., 233, pp. 93-112. , Bratislava/Czech1986Lect. Notes Comput. Sci 
504 |a von zur Gathen, J., Parallel linear algebra (1993) Synthesis of Parallel Algorithms, pp. 573-617. , J. H. Reif (Ed.), San Mateo: Morgan Kaufmann 
520 3 |a For a real square-free multivariate polynomial F, we treat the general problem of finding real solutions of the equation F=0, provided that the real solution set {F=0}ℝ is compact. We allow that the equation F=0 may have singular real solutions. We are going to decide whether this equation has a non-singular real solution and, if this is the case, we exhibit one for each generically smooth connected component of {F=0}ℝ. We design a family of elimination algorithms of intrinsic complexity which solves this problem. In the worst case, the complexity of our algorithms does not exceed the already known extrinsic complexity bound of (nd)O(n) for the elimination problem under consideration, where n is the number of indeterminates of F and d its (positive) degree. In the case that the real variety defined by F is smooth, there already exist algorithms of intrinsic complexity that solve our problem. However, these algorithms cannot be used in case when F=0 admits F-singular real solutions. An elimination algorithm of intrinsic complexity presupposes that the polynomial F is encoded by an essentially division-free arithmetic circuit of size L (i. e., F can be evaluated by means of L additions, subtractions and multiplications, using scalars from a previously fixed real ground field, say ℚ) and that there is given an invariant δ(F) which (roughly speaking) depends only on the geometry of the complex hypersurface defined by F. The complexity of the algorithm (measured in terms of the number of arithmetic operations in ℚ) is then linear in L and polynomial in n,d and δ(F). In order to find such a geometric invariant δ(F), we consider suitable incidence varieties which in fact are algebraic families of dual polar varieties of the complex hypersurface defined by F. The generic dual polar varieties of these incidence varieties are called bipolar varieties of the equation F=0. The maximal degree of these bipolar varieties then becomes the essential ingredient of our invariant δ(F). © 2011 SFoCM.  |l eng 
593 |a Institut für Mathematik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany 
593 |a CNRS, Lab. LIX, École Polytechnique, 91228 Palaiseau CEDEX, France 
593 |a Departamento de Computación, Universidad de Buenos Aires and CONICET, Ciudad Univ., Pab. I, 1428 Buenos Aires, Argentina 
593 |a Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain 
690 1 0 |a DEGREE OF VARIETIES 
690 1 0 |a INTRINSIC COMPLEXITY 
690 1 0 |a POLAR AND BIPOLAR VARIETIES 
690 1 0 |a REAL POLYNOMIAL EQUATION SOLVING 
690 1 0 |a SINGULARITIES 
700 1 |a Giusti, M. 
700 1 |a Heintz, J. 
700 1 |a Lehmann, L. 
700 1 |a Pardo, L.M. 
773 0 |d 2012  |g v. 12  |h pp. 75-122  |k n. 1  |p Found. Comput. Math.  |x 16153375  |t Foundations of Computational Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856216156&doi=10.1007%2fs10208-011-9112-6&partnerID=40&md5=37dbcdcab932d737e11ebdb4bc555ef7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10208-011-9112-6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16153375_v12_n1_p75_Bank  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16153375_v12_n1_p75_Bank  |y Registro en la Biblioteca Digital 
961 |a paper_16153375_v12_n1_p75_Bank  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84439