Shimura correspondence for level p2 and the central values of L-series, II

Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pacetti, A.
Otros Autores: Tornaría, G.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06096caa a22005297a 4500
001 PAPER-23927
003 AR-BaUEN
005 20230518205542.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84929518491 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pacetti, A. 
245 1 0 |a Shimura correspondence for level p2 and the central values of L-series, II 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2014 
506 |2 openaire  |e Política editorial 
504 |a Böcherer, S., Schulze-Pillot, R., The Dirichlet series of Koecher and Maass and modular forms of weight (1992) Math. Z., 209 (2), pp. 273-287 
504 |a Brzezínski, J., On orders in quaternion algebr (1983) Comm. Algebra, 11 (5), pp. 501-522 
504 |a Eichler, M., The basis problem for modular forms and the traces of the Hecke operato (1973) Modular Functions of One Variable, I, Lecture Notes in Mathematics, 320, pp. 75-151. , Springer, Berlin 
504 |a Gross, B.H., Heights and the special values of L-seri (1987) Number Theory, CMS Conference Proceedings, 7, pp. 115-187. , American Mathematical Society, Providence, RI 
504 |a Gross, B.H., Zagier, D.B., Heegner points and derivatives of L-seri (1986) Invent. Math., 84 (2), pp. 225-320 
504 |a Hijikata, H., Explicit formula of the traces of Hecke operators for ?0( (1974) J. Math. Soc. Japan, 26, pp. 56-82 
504 |a Pacetti, A., Rodriguez Villegas, F., Computing weight 2 modular forms of level (2005) Math. Comp., 74 (251), pp. 1545-1557. , (electronic); With an appendix by B. Gross 
504 |a Pacetti, A., Tornariá, G., Examples of the Shimura correspondence fo r level p2 and real quadratic twis (2007) Ranks of Elliptic Curves and Random Matrix Theory, London Mathematical Society Lecture Note Series, 341, pp. 289-314. , (Cambridge University Press, Cambridge 
504 |a Shimura correspondence for level p2 and the central values of L-seri (2007) J. Number Theory, 124 (2), pp. 396-414 
504 |a Pizer, A., Theta series and modular forms of level p (1980) Compos. Math., 40 (2), pp. 177-241 
504 |a Shimura, G., On modular forms of half integral weig (1973) Ann. of Math., 2 (97), pp. 440-481 
504 |a Tornarí, G., (2004) Data about the Central Values of the L-series of (Imaginary and Real) Quadratic Twists of Elliptic Curves, , http://www.ma.utexas.edu/users/tornaria/cnt, preprint 
504 |a Vignéras, M.-F., Arithmétique des algebres de quaternio (1980) Lecture Notes in Mathematics, 800. , Springer, Berlin 
504 |a Waldspurger, J.-L., Sur les coefficients de Fourier des formes modulaires de poids demi-enti (1981) J. Math. Pures Appl., 60 (4-9), pp. 375-484 
504 |a Correspondances de Shimura et quaternio (1991) Forum Math., 3 (3), pp. 219-307 
520 3 |a Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p2, for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p2) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation. © 2014 World Scientific Publishing Company.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Investigación e Innovación, FCE 2009/2972 
536 |a Detalles de la financiación: PIP 2010-2012 GI, FonCyT BID-PICT 2010-0681 
536 |a Detalles de la financiación: The first author was partially supported by CONICET PIP 2010-2012 GI and FonCyT BID-PICT 2010-0681. The second author was partially supported by ANII FCE 2009/2972. The first author would like to thank the Centro de Matemática of the Facultad de Ciencias for its hospitality during different visits. 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, Buenos Aires, C.P.: 1428, Argentina 
593 |a Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225 esq. Mataojo, Montevideo, Uruguay 
690 1 0 |a L-SERIES SPECIAL VALUES 
690 1 0 |a SHIMURA CORRESPONDENCE 
700 1 |a Tornaría, G. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2014  |g v. 10  |h pp. 1595-1635  |k n. 7  |p Int. J. Number Theory  |x 17930421  |t International Journal of Number Theory 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929518491&doi=10.1142%2fS179304211450047X&partnerID=40&md5=4d27a175d2b8d4f778d1406298803103  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S179304211450047X  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17930421_v10_n7_p1595_Pacetti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17930421_v10_n7_p1595_Pacetti  |y Registro en la Biblioteca Digital 
961 |a paper_17930421_v10_n7_p1595_Pacetti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84880