Molecular and electronic structure of self-assembled monolayers containing ruthenium(II) complexes on gold surfaces

Ru(II) bipyridyl complexes were covalently bonded to self-assembled monolayers (SAM) on Au surfaces. Their molecular and electronic structure was studied by means of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), photoelectron spectroscopies, scanning tunneling micro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: De La Llave, E.
Otros Autores: Herrera, S.E, Méndez De Leo, L.P, Williams, F.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12509caa a22010217a 4500
001 PAPER-23969
003 AR-BaUEN
005 20230518205544.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84920279462 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a De La Llave, E. 
245 1 0 |a Molecular and electronic structure of self-assembled monolayers containing ruthenium(II) complexes on gold surfaces 
260 |b American Chemical Society  |c 2014 
270 1 0 |m Williams, F.J.; Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Forster, R.J., Keyes, T.E., Photonic Interfacial Supramolecular Assemblies Incorporating Transition Metals (2009) Coord. Chem. Rev., 253, pp. 1833-1853 
504 |a Rogers, N.J., Claire, S., Harris, R.M., Farabi, S., Zikeli, G., Styles, I.B., Hodges, N.J., Pikramenou, Z., High Coating of Ru(II) Complexes on Gold Nanoparticles for Single Particle Luminescence Imaging in Cells (2014) Chem. Commun., 50, pp. 617-619 
504 |a Kurita, R., Arai, K., Nakamoto, K., Kato, D., Niwa, O., Development of Electrogenerated Chemiluminescence-Based Enzyme Linked Immunosorbent Assay for Sub-pM Detection (2010) Anal. Chem., 82, pp. 1692-1697 
504 |a Chu, B.W.-K., Yam, V.W.-W., Sensitive Single-Layered Oxygen-Sensing Systems: Polypyridyl Ruthenium(II) Complexes Covalently Attached or Deposited as Langmuir-Blodgett Monolayer on Glass Surfaces (2006) Langmuir, 22, p. 7437. , 10 
504 |a Li, S., Zhong, X., Yang, H., Hu, Y., Zhang, F., Niu, Z., Hu, W., Ma, J., Noncovalent Modified Graphene Sheets with Ruthenium(II) Complexes Used as Electrochemiluminescent Materials and Photosensors (2011) Carbon, 49, pp. 4239-4245 
504 |a Yu, Y., Zhou, M., Shen, W., Zhang, H., Cao, Q., Cui, H., Synthesis of Electrochemiluminescent Graphene Oxide Functionalized with a Ruthenium(II) Complex and its Use in the Detection of Tripropylamine (2012) Carbon, 50, pp. 2539-2545 
504 |a Eckermann, A.M., Feld, D.J., Shaw, J.A., Meade, T.J., Electrochemistry of Redox-Active Self-Assembled Monolayers (2010) Coord. Chem. Rev., 254, pp. 1769-1802 
504 |a Bertoncello, P., Kefalas, E.T., Pikramenou, Z., Unwin, P.R., Forster, R.J., Adsorption Dynamics and Electrochemical and Photophysical Properties of Thiolated Ruthenium 2,2′-Bipyridine Monolayers (2006) J. Phys. Chem. B, 110, pp. 10063-10069 
504 |a Dennany, L., Oreilly, E., Forster, R.J., Electrochemiluminescent Monolayers on Metal Oxide Electrodes: Detection of Amino Acids (2006) Electrochem. Commun., 8, pp. 1588-1594 
504 |a Yuan, Y., Li, H., Han, S., Hu, L., Parveen, S., Cai, H., Xu, G., Immobilization of Tris(1,10-phenanthroline)Ruthenium with Graphene Oxide for Electrochemiluminescent Analysis (2012) Anal. Chim. Acta, 720, pp. 38-42 
504 |a Tao, Y., Lin, Z.-J., Chen, X.-M., Huang, X.-L., Oyama, M., Chen, X., Wang, X.-R., Functionalized Multiwall Carbon Nanotubes Combined with Bis(2,2 -bipyridine)-5-amino-1,10-phenanthroline Ruthenium(II) as an Electrochemiluminescence Sensor (2008) Sens. Actuators, B, 129, pp. 758-763 
504 |a Chen, X.-M., Wu, G.-H., Chen, J.-M., Jiang, Y.-Q., Chen, G.-N., Oyama, M., Chen, X., Wang, X.-R., A Novel Electrochemiluminescence Sensor Based on Bis(2,2 -bipyridine)-5-amino-1,10-phenanthroline Ruthenium(II) Covalently Combined with Graphite Oxide (2010) Biosens. Bioelectron., 26, pp. 872-876 
504 |a Yu, Y., Zhoub, M., Cui, H., Synthesis and Electrochemiluminescence of Bis(2,20-bipyridine)(5-amino-1,10-phenanthroline) Ruthenium(II)-Functionalized Gold Nanoparticles (2011) J. Mater. Chem., 21, pp. 12622-12625 
504 |a Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Gratzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers (2005) J. Am. Chem. Soc., 127, pp. 16835-16847 
504 |a De Angelis, F., Fantacci, S., Selloni, A., Nazeeruddin, M.K., Gratzel, M., Time-Dependent Density Functional Theory Investigations on the Excited States of Ru(II)-Dye-Sensitized TiO2 Nanoparticles: The Role of Sensitizer Protonation (2007) J. Am. Chem. Soc., 129, pp. 14156-14157 
504 |a Srnec, M., Chalupsky, J., Fojta, M., Zendlova, L., Havran, L., Hocek, M., Kyvala, M., Rulisek, L., Effect of Spin-Orbit Coupling on Reduction Potentials of Octahedral Ruthenium(II/III) and Osmium(II/III) Complexes (2008) J. Am. Chem. Soc., 130, pp. 10947-10954 
504 |a Abrahamsson, M., Jager, M., Kumar, R.J., Osterman, T., Persson, P., Becker, H.C., Johansson, O., Hammarstrom, L., Bistridentate Ruthenium(II)polypyridyl-Type Complexes with Microsecond 3MLCT State Lifetimes: Sensitizers for Rod-Like Molecular Arrays (2008) J. Am. Chem. Soc., 130, pp. 15533-15542 
504 |a Johansson, E.M.J., Odelius, M., Plogmaker, S., Gorgoi, M., Svensson, S., Siegbahn, H., Rensmo, H., Spin-Orbit Coupling and Metal-Ligand Interactions in Fe(II), Ru(II), and Os(II) Complexes (2010) J. Phys. Chem. C, 114, pp. 10314-10322 
504 |a Gorelsky, S.I., Dodsworth, E.S., Lever, A.B.P., Vlcek, A.A., Trends in Metal-Ligand Orbital Mixing in Generic Series of Ruthenium N-donor Ligand Complexes-Effect on Electronic Spectra and Redox Properties (1998) Coord. Chem. Rev., 174, pp. 469-494 
504 |a Vlcek, A., Zalis, S., Modeling of Charge-Transfer Transitions and Excited States in d6 Transition Metal Complexes by DFT Techniques (2007) Coord. Chem. Rev., 251, pp. 258-287 
504 |a Sehgal, D., Vijay, K., A Method for the High Efficiency of Water-Soluble Carbodiimide-Mediated Amidation (1994) Anal. Biochem., 218, pp. 87-91 
504 |a Ricci, A.M., Tognalli, N., De La Llave, E., Vericat, C., Mendez De Leo, L.P., Williams, F.J., Scherlis, D., Calvo, E.J., Electrochemistry of Os(2,2′bpy)2Cl PyCH2NHCOPh Tethered to Au Electrodes by S-Au and C-Au Junctions (2011) Phys. Chem. Chem. Phys., 13, pp. 5336-5345 
504 |a Barner, B.J., Green, M.J., Saez, E.I., Corn, R.M., Polarization Modulation Fourier Transform Infrared Reflectance Measurements of Thin Films and Monolayers at Metal Surfaces Utilizing Real-Time Sampling Electronics (1991) Anal. Chem., 63, pp. 55-60 
504 |a Green, M.J., Barner, B.J., Corn, R.M., Real-Time Sampling Electronics for Double Modulation Experiments with Fourier Transform Infrared Spectrometers (1991) Rev. Sci. Instrum., 62, pp. 1426-1430 
504 |a Frey, B.L., Corn, R.M., Weibel, S.C., (2001) Polarization-Modulation Approaches to Reflection-Absorption Spectroscopy, 2, pp. 1042-1056. , John Wiley & Sons: New York 
504 |a Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas (1964) Phys. Rev., 136, pp. 864-B871 
504 |a Kohn, W., Sham, L.J., Self-Consistent Equations Including Exchange and Correlation Effects (1965) Phys. Rev., 140, pp. 1133-A1138 
504 |a Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Dabo, I., QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials (2009) J. Phys.: Condens. Matter, 21, p. 395502 
504 |a Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism (1990) Phys. Rev. B, 41, pp. 7892-7895 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868 
504 |a Nuzzo, R.G., Dubois, L.H., Allara, D.L., Fundamental Studies of Microscopic Wetting on Organic Surfaces. 1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers (1990) J. Am. Chem. Soc., 112, pp. 558-569 
504 |a Lin-Vein, D., Colthup, N.B., Fateley, W.B., Grasselli, J.G., (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, , Academic Press Inc. San Diego, CA 
504 |a De La Llave, E., Clarence, R., Schiffrin, D.J., Williams, F.J., Organization of Alkane Amines on a Gold Surface: Structure, Surface Dipole, and Electron Transfer (2014) J. Phys. Chem. C, 118, pp. 468-475 
504 |a Vericat, C., Vela, M.E., Benitez, G., Carro, P., Salvarezza, R.C., Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System (2010) Chem. Soc. Rev., 39, pp. 1-30 
504 |a Alloway, D.M., Hofmann, M., Smith, D.L., Gruhn, N.E., Graham, A.L., Colorado, R., Wysocki, V.H., Armstrong, N.R., Interface Dipoles Arising from Self-Assembled Monolayers on Gold: UV-Photoemission Studies of Alkanethiols and Partially Fluorinated Alkanethiols (2003) J. Phys. Chem. B, 107, pp. 11690-11699 
504 |a Westermark, K., Rensmo, H., Lees, A.C., Vos, J.G., Siegbahn, H., Electron Spectroscopic Studies of Bis-(2,2-bipyridine)(4,4-dicarboxy-2,2-bipyridine)ruthenium(II) and Bis-(2,2-bipyridine)(4,4-dicarboxy-2,2-bipyridine)osmium(II) Adsorbed on Nanostructured TiO2 and ZnO Surfaces (2002) J. Phys. Chem. B, 106, pp. 10108-11011 
504 |a Vericat, C., Vela, M.E., Benitez, G.A., Gago, J.A.M., Torrelles, X., Salvarezza, R.C., Surface Characterization of Sulfur and Alkanethiol Self-Assembled Monolayers on Au(111) (2006) J. Phys.: Condens. Matter, 18, pp. 867-900 
504 |a Méndez De Leo, L.P., De La Llave, E., Scherlis, D., Williams, F.J., Molecular and Electronic Structure of Electroactive Self-Assembled Monolayers (2013) J. Chem. Phys., 138, p. 114707 
520 3 |a Ru(II) bipyridyl complexes were covalently bonded to self-assembled monolayers (SAM) on Au surfaces. Their molecular and electronic structure was studied by means of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), photoelectron spectroscopies, scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. We found that attaching the Ru complex to the SAM does not cause great modifications to its molecular structure, which retains the alkyl chain 30 deg tilted with respect to the surface normal. Furthermore, the Ru center is located 20 Å away from the metal surface, i.e., at a sufficient distance to prevent direct electronic interaction with the substrate. Indeed the electronic structure of the Ru complex is similar to that of the free molecule with a HOMO molecular orbital mainly based on the Ru center located 2.1 eV below the Fermi edge and the LUMO molecular orbital based on the bipyridine groups located 1 eV above the Fermi level. © 2014 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a ABSORPTION SPECTROSCOPY 
690 1 0 |a DENSITY FUNCTIONAL THEORY 
690 1 0 |a ELECTRONIC STRUCTURE 
690 1 0 |a GOLD COMPOUNDS 
690 1 0 |a MOLECULAR ORBITALS 
690 1 0 |a MONOLAYERS 
690 1 0 |a PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a RUTHENIUM 
690 1 0 |a RUTHENIUM ALLOYS 
690 1 0 |a RUTHENIUM COMPOUNDS 
690 1 0 |a SCANNING TUNNELING MICROSCOPY 
690 1 0 |a COVALENTLY BONDED 
690 1 0 |a ELECTRONIC INTERACTIONS 
690 1 0 |a FREE MOLECULES 
690 1 0 |a GOLD SURFACES 
690 1 0 |a METAL SURFACES 
690 1 0 |a POLARIZATION MODULATION INFRARED REFLECTION ABSORPTION SPECTROSCOPY 
690 1 0 |a RUTHENIUM COMPLEXES 
690 1 0 |a SURFACE NORMALS 
690 1 0 |a SELF ASSEMBLED MONOLAYERS 
700 1 |a Herrera, S.E. 
700 1 |a Méndez De Leo, L.P. 
700 1 |a Williams, F.J. 
773 0 |d American Chemical Society, 2014  |g v. 118  |h pp. 21420-21427  |k n. 37  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920279462&doi=10.1021%2fjp507199z&partnerID=40&md5=235cc1e16b3ec52cb59180d47ec08e36  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp507199z  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v118_n37_p21420_DeLaLlave  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v118_n37_p21420_DeLaLlave  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v118_n37_p21420_DeLaLlave  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 84922