Magnetic pileup boundary and field draping at Comet Halley

The approach of the Rosetta S/C to Comet Churyumov-Gerasimenko in 2014 reactivates the interest in the plasma interaction of the solar wind with the cometary coma. In preparation for the upcoming S/C observations and the start of outgassing of the cometary nucleus, we reinvestigate the magnetic fiel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Delva, M.
Otros Autores: Bertucci, César Luis Fermín, Schwingenschuh, K., Volwerk, M., Romanelli, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09847caa a22008777a 4500
001 PAPER-24023
003 AR-BaUEN
005 20241009100809.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84901376153 
030 |a PLSSA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Delva, M. 
245 1 0 |a Magnetic pileup boundary and field draping at Comet Halley 
260 |b Elsevier Ltd  |c 2014 
270 1 0 |m Delva, M.; Space Research Institute, Austrian Academy of Sciences, Graz, Austria; email: magda.delva@oeaw.ac.at 
504 |a Alfvèn, H.T., On the theory of comet tails (1957) Tellus, 91, pp. 92-96 
504 |a Auster, H.U., Apathy, I., Berghofer, G., Remizov, A., Roll, R., Fornacon, K.H., Glassmeier, K.H., Waesch, R., Romap: Rosetta magnetometer and plasma monitor (2007) Space Sci. Rev., 128, pp. 221-240. , 10.1007/s11214-006-9033-x 
504 |a Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szegö, K., Vaisberg, O., The induced magnetospheres of Mars, Venus, and Titan (2011) Space Sci. Rev., 162, pp. 113-171. , 10.1007/s11214-011-9845-1 
504 |a Bertucci, C., Mazelle, C., Crider, D.H., Vignes, D., Acuña, M.H., Mitchell, D.L., Lin, R.P., Winterhalter, D., Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations (2003) Geophys. Res. Lett., 30, p. 1099. , 10.1029/2002GL015713 
504 |a Bertucci, C., Mazelle, C., Slavin, J.A., Russell, C.T., Acuña, M.H., Magnetic field draping enhancement at Venus: Evidence for a magnetic pileup boundary (2003) Geophys. Res. Lett., 30, p. 1876. , 10.1029/2003GL017271 
504 |a Glassmeier, K.-H., Boenhardt, H., Koschny, D., Kührt, E., Richter, I., The ROSETTA mission: Flying towards the origin of the solar system (2007) Space Sci. Rev., 128, pp. 1-21. , 10.1007/s11214-006-9140-8 
504 |a Glassmeier, K.-H., Motschmann, U., Mazelle, C., Neubauer, F.M., Sauer, K., Fuselier, S.A., Acuña, M.H., Mirror modes and fast magnetoacoustic waves near the magnetic pileup boundary of comet P/Halley (1993) J. Geophys. Res., 98 (A12), pp. 20955-20964 
504 |a Glassmeier, K.-H., Richter, I., Diedrich, A., Mussmann, G., Auster, U., Motschmann, U., Balogh, A., Tsurutani, B., RPC-MAG the fluxgate magnetometer in the ROSETTA plasma consortium (2007) Space Sci. Rev., 128, pp. 649-670. , 10.1007/s11214-006-9114-x 
504 |a Gringauz, First in situ plasma and neutral gas measurements at comet Halley (1986) Nature, 321, p. 282 
504 |a Israelevich, P.L., The induced magnetosphere of comet Halley: Interplanetary magnetic field during Giotto encounter (1994) J. Geophys. Res., 99 (A4), pp. 6575-6583 
504 |a Lucek, E.A., Dunlop, M.W., Balogh, A., Cargill, P., Baumjohann, W., Georgescu, E., Haerendel, G., Fornac, K.-H., Mirror mode structures observed in the dawn-side magnetosheath by Equator-S (1999) Geophys. Res. Lett., 26, pp. 2159-2162 
504 |a Lucek, E.A., Dunlop, M.W., Balogh, A., Cargill, P., Baumjohann, W., Georgescu, E., Haerendel, G., Fornac, K.-H., Identification of magnetosheath mirror modes in Equator-S magnetic field data (1999) Ann. Geophys., 17, pp. 1560-1573 
504 |a Mazelle, C., Belmont, G., Glassmeier, K.H., Le Quéau, D., Rème, H., Ultra low frequency waves at the magnetic pile-up boundary of comet P/Halley (1991) Adv. Space Res., 11, p. 73 
504 |a Neubauer, F.M., Glassmeier, K.H., Pohl, M., Raeder, J., Acuna, M.H., Burlaga, L.F., Ness, N.F., Schmidt, H.U., First results from the Giotto magnetometer experiment at comet Halley (1986) Nature, 321, p. 352 
504 |a Neubauer, F.M., Giotto magnetic-field results on the boundaries of the pile-up region and the magnetic cavity (1987) Astron. Astrophys., 187, pp. 73-79 
504 |a Price, C.P., Swift, D.W., Lee, L.-C., Numerical simulation of nonoscillatory mirror waves at the Earth's magnetosheath (1986) J. Geophys. Res., 91, pp. 101-112 
504 |a Reinhard, R., The Giotto encounter with comet Halley 1986 (1986) Nature, 321, p. 313 
504 |a Rème, H., Mazelle, C., D'Uston, C., Korth, A., Lin, R.P., Chaizy, P., There is no "cometopause" at comet Halley (1994) J. Geophys. Res., 99 (A2), pp. 2301-2308 
504 |a Riedler, W., Schwingenschuh, K., Styashkin, V.A., Russell, C.T., Magnetic field observations in comet Halley's coma (1986) Nature, 321, p. 288 
504 |a Russell, C.T., Le, G., Schwingenschuh, K., Riedler, W., Mirror mode waves at comet Halley, in "cometary Plasma Processes" (1991) Geophysical Monograph, 61. , AGU 
504 |a Sauer, K., Motschmann, U., Roatsch, Th., Plasma boundaries at comet Halley (1990) Ann. Geophys., 8, pp. 243-250 
504 |a Schwingenschuh, K., Riedler, W., Schelch, G., Styashkin, V.A., Luhmann, J.G., Russell, C.T., Fedder, J.A., Cometary boundaries: Vega observations at Halley (1986) Adv. Space Res., 6, p. 217 
504 |a Vaisberg, O.L., Russell, C.T., Luhmann, J.G., Schwingenschuh, K., Small scale irregularities in comet Halley's plasma mantle: An attempt at self-consistent analysis of plasma and magnetic field data (1989) Geophys. Res. Lett., 16, pp. 5-9 
504 |a Volwerk, M., Zhang, T.L., Delva, M., Vörös, Z., Baumjohann, W., Glassmeier, K.-H., First identification of mirror mode waves in Venus' magnetosheath (2008) Geophys. Res. Lett., 35, p. 12204. , 10.1029/2008GL033621 
504 |a Von Rosenvinge, T.T., Brandt, J.C., Farquhar, R.W., The international cometary explorer mission to comet Giacobini-Zinner (1986) Science, 232, p. 353. , (doi:10.1126/science.232.4748.353) 
506 |2 openaire  |e Política editorial 
520 3 |a The approach of the Rosetta S/C to Comet Churyumov-Gerasimenko in 2014 reactivates the interest in the plasma interaction of the solar wind with the cometary coma. In preparation for the upcoming S/C observations and the start of outgassing of the cometary nucleus, we reinvestigate the magnetic field data from the Vega-1 S/C at the flyby of Comet Halley (1986), in search of the magnetic pileup boundary and increase of field line draping. The magnetic pileup boundary has been identified as a common feature for unmagnetized bodies with an induced magnetosphere. This boundary marks the outer edge of the magnetic pileup region, also known as the magnetic barrier region, in which the magnetic field is strong and highly draped. Initially, the magnetic field draping around Comet Halley was clearly identified from the Vega-1 magnetometer data through reversal of the field component in direction to the Sun at closest approach. Here, a detailed analysis is performed in regions further upstream in the magnetosheath. The Vega-1 high resolution magnetometer data on the in- and outbound leg but inside the bow wave are reinvestigated in search for the magnetic pileup boundary as an indicator for the outer edge of the magnetic barrier. The magnetic field pileup region is studied using the correlation between the field component towards the Sun and the radial component in an aberrated cometocentric frame; this technique proved very successful for Mars and also for comets Giacobini-Zinner and Halley in the case of Giotto observations. We can clearly identify the different regimes in the magnetic field data, on the in- and outbound leg of the orbit. Waves just within the newly determined magnetic pileup region have properties different from mirror mode waves, whereas waves observed out of the magnetic pileup boundary are confirmed as mirror mode. The boundaries found at Comet Halley prove that also the detailed structure of the interaction of unmagnetized bodies with an atmosphere with the solar wind is valid for active comets, but with larger space scale. © 2014 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: The authors thank the International Space Science Institute (ISSI, Switzerland) for supporting this work through the working group on Comparative Induced Magnetospheres. MD, MV, CB and NR were also supported by BMWF/ÖAD (Austria) and MINCYT/OEI (Argentina). 
593 |a Space Research Institute, Austrian Academy of Sciences, Graz, Austria 
593 |a Astrophysical Plasmas, IAFE, Buenos Aires, Argentina 
690 1 0 |a COMETS 
690 1 0 |a INDUCED MAGNETOSPHERE 
690 1 0 |a MAGNETIC FIELD DRAPING 
690 1 0 |a PLASMA BOUNDARIES 
690 1 0 |a SOLAR WIND INTERACTION 
690 1 0 |a MAGNETIC FIELDS 
690 1 0 |a MAGNETOSPHERE 
690 1 0 |a MIRRORS 
690 1 0 |a PLASMA INTERACTIONS 
690 1 0 |a SOLAR WIND 
690 1 0 |a CHURYUMOV-GERASIMENKO 
690 1 0 |a COMETS 
690 1 0 |a INDUCED MAGNETOSPHERES 
690 1 0 |a MAGNETIC BARRIERS 
690 1 0 |a MAGNETIC FIELD DATA 
690 1 0 |a MAGNETIC PILEUP BOUNDARY 
690 1 0 |a PLASMA BOUNDARY 
690 1 0 |a SOLAR WIND INTERACTIONS 
690 1 0 |a MAGNETOMETERS 
700 1 |a Bertucci, César Luis Fermín 
700 1 |a Schwingenschuh, K. 
700 1 |a Volwerk, M. 
700 1 |a Romanelli, N. 
773 0 |d Elsevier Ltd, 2014  |g v. 96  |h pp. 125-132  |p Planet. Space Sci.  |x 00320633  |w (AR-BaUEN)CENRE-2228  |t Planetary and Space Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901376153&doi=10.1016%2fj.pss.2014.02.010&partnerID=40&md5=4a506a50056566d33d7e12a0d10f6b15  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.pss.2014.02.010  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00320633_v96_n_p125_Delva  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00320633_v96_n_p125_Delva  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00320633_v96_n_p125_Delva  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion