An observing system simulation experiment for the aquarius/SAC-D soil moisture product

An Observing System Simulation Experiment (OSSE) for the Aquarius/SAC-D mission has been developed for assessing the accuracy of soil moisture retrievals from passive L-band remote sensing. The implementation of the OSSE is based on the following: a 1-km land surface model over the Red-Arkansas Rive...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bruscantini, C.A
Otros Autores: Crow, W.T, Grings, Francisco Matías, Perna, P., Maas, M., Karszenbaum, H.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Institute of Electrical and Electronics Engineers Inc. 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10865caa a22010337a 4500
001 PAPER-24036
003 AR-BaUEN
005 20250428091602.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84901978232 
030 |a IGRSD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bruscantini, C.A. 
245 1 3 |a An observing system simulation experiment for the aquarius/SAC-D soil moisture product 
260 |b Institute of Electrical and Electronics Engineers Inc.  |c 2014 
270 1 0 |m Bruscantini, C.A.; Instituto de Astronomía y Física Del Espacio, C1428ZAA Buenos Aires, Argentina; email: cintiab@iafe.uba.ar 
504 |a Crow, W.T., Drusch, M., Wood, E.F., An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval (2001) IEEE Transactions on Geoscience and Remote Sensing, 39 (8), pp. 1622-1631. , DOI 10.1109/36.942540, PII S0196289201066785, Large Scale Passive Microwave Remote Sensing of Soil Moisture 
504 |a Crow, W.T., Chan, S.T.K., Entekhabi, D., Houser, P.R., Hsu, A.Y., Jackson, T.J., Njoku, E.G., Zhan, X., An Observing System Simulation Experiment for Hydros radiometer-only soil moisture products (2005) IEEE Trans. Geosci. Remote Sens, 43 (6), pp. 1289-1303. , Jun 
504 |a Le Vine, D.M., Dinnat, E.P., Abraham, S., De Matthaeis, P., Wentz, F.J., The aquarius simulator and cold-sky calibration (2011) IEEE Trans. Geosci. Remote Sens, 49 (9), pp. 3198-3210. , Se 
504 |a Njoku, E.G., Entekhabi, D., Passive microwave remote sensing of soil moisture (1996) J. Hydrol, 184 (1-2), pp. 101-129. , Oct 
504 |a Jackson, T.J., Le Vine, D.M., Hsu, A.Y., Oldak, A., Starks, P.J., Swift, C.T., Isham, J.D., Haken, M., Soil moisture mapping at regional scales using microwave radiometry: The Southern great plains hydrology experiment (1999) IEEE Transactions on Geoscience and Remote Sensing, 37 (5), pp. 2136-2151. , pt1 DOI 10.1109/36.789610 
504 |a Luo, Y., Feng, X., Houser, P., Anantharaj, V., Fan, X., De Lannoy, G., Zhan, X., Dabbiru, L., Potential soil moisture products from the Aquarius radiometer and scatterometer using an Observing System Simulation Experiment (2012) Geosci. Instrum Methods Data Syst. Discuss, 2 (2), pp. 457-476 
504 |a Crow, W.T., Koster, R.D., Reichle, R.H., Sharif, H.O., Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products (2005) Geophys. Res. Lett, 32 (24), pp. L24405 
504 |a Konings, A.G., Entekhabi, D., Chan, S.T.K., Njoku, E.G., Effect of radiative transfer uncertainty on L-band radiometric soil moisture retrieval (2011) IEEE Trans. Geosci. Remote Sens, 49 (7), pp. 2686-2698. , Jul 
504 |a Peters-Lidard, C.D., Zion, M.S., Wood, E.F., A soil vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes (1997) J. Geophys. Res, 102 (D4), pp. 4303-4324. , Feb 
504 |a Jackson, T.J., Schmugge, T.J., Vegetation effects on the microwave emission of soil (1991) Remote Sens. Environ, 36 (3), pp. 203-212. , Jun 
504 |a Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., El-Rayes, M.A., Microwave dielectric behavior of wet soil Part II: Dielectric mixing models (1985) IEEE Trans. Geosci. Remote Sens Vol GE-23, (1), pp. 35-46. , Jan 
504 |a Zhan, X., Crow, W.T., Jackson, T.J., O'Neill, P.E., Improving spaceborne radiometer soil moisture retrievals with alternative aggregation rules for ancillary parameters in highly heterogeneous vegetated areas (2008) IEEE Geosci. Remote Sens. Lett, 5 (2), pp. 261-265. , Apr 
504 |a Le Vine, D.M., Lagerloef, G.S.E., Yueh, S., Pellerano, F., Dinnat, E., Wentz, F., Aquarius mission technical overview (2006) Proc. IGARSS, pp. 1678-1680. , Jul 
504 |a Limaye, A.S., Crosson, W.L., Laymon, C.A., Estimating accuracy in optimal deconvolution of synthetic AMSR-E observations (2006) Remote Sens. Environ, 100 (1), pp. 133-142. , Jan 
504 |a Chao, Y., L2a Aquarius science requirements (2008) Jet Propulsion Lab, Pasadena, CA, USA, Tech. Rep, , Jul 
504 |a Foti, G., Finch, C., Aquarius user guide (2011) Jet Propulsion Lab, , Pasadena, CA, USA, Tech. Rep 
504 |a Jackson, T.J., Measuring surface soil moisture using passive microwave remote sensing (1993) Hydrol. Process, 7 (2), pp. 139-152 
504 |a Bruscantini, C.A., Grings, F.M., Perna, P., Karszenbaum, H., Crow, W.T., Jacobo, J.C.A., An Observing System Simulation Experiment (OSSE) for the Aquarius/SAC-D soil moisture product (2012) Proc. 12th Spec. Meet. MicroRad, Mar, pp. 1-4 
504 |a Lilly, J.M., Lagerloef, G.S.E., Aquarius level 3 processing algorithm theoretical basis document, Part II (2009) Implementation, , Feb 
504 |a Calvet, J.-C., Wigneron, J.-P., Walker, J., Karbou, F., Chanzy, A., Albergel, C., Sensitivity of passive microwave observations to soil moisture and vegetation water content: L-band to W-band (2011) IEEE Trans. Geosci. Remote Sens, 49 (4), pp. 1190-1199. , Ar 
504 |a Ulaby, F.T., Moore, R.K., Fung, A.K., (1986) Microwave Remote Sensing: Active and Passive. from Theory to Applications, , Norwood, MA, USA: Artech House 
504 |a Pellarin, T., Wigneron, J.-P., Calvet, J.-C., Berger, M., Douville, H., Ferrazzoli, P., Kerr, Y.H., Waldteufel, P., Two-year global simulation of L-band brightness temperatures over land (2003) IEEE Trans. Geosci. Remote Sens, 41 (9), pp. 2135-2139. , Sep 
504 |a Chen, D., Jackson. F Li., T.J., Cosh, M.H., Walthall, C., Anderson, M., Estimation of vegetation water content for corn and soybeans with a normalized difference water index (ndwi) using landsat thematic mapper data (2003) Proc IEEE IGARSS, 4, pp. 2853-2856 
504 |a Jing, T., Jiancheng, S., Jackson, T.J., Jinyang, D., Bindlish, R., Lixin, Z., Monitoring vegetation water content using microwave vegetation indices (2008) Proc IEEE IGARSS, 1, pp. I197-I200 
504 |a Chen, D., Huang, J., Jackson, T.J., Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands (2005) Remote Sensing of Environment, 98 (2-3), pp. 225-236. , DOI 10.1016/j.rse.2005.07.008, PII S0034425705002373 
504 |a Jackson, T.J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P., Hunt, E.R., Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans (2004) Remote Sensing of Environment, 92 (4), pp. 475-482. , DOI 10.1016/j.rse.2003.10.021, PII S0034425703003353 
506 |2 openaire  |e Política editorial 
520 3 |a An Observing System Simulation Experiment (OSSE) for the Aquarius/SAC-D mission has been developed for assessing the accuracy of soil moisture retrievals from passive L-band remote sensing. The implementation of the OSSE is based on the following: a 1-km land surface model over the Red-Arkansas River Basin, a forward microwave emission model to simulate the radiometer observations, a realistic orbital and sensor model to resample the measurements mimicking Aquarius operation, and an inverse soil moisture retrieval model. The simulation implements a zero-order radiative transfer model. Retrieval is performed by direct inversion of the forward model. The Aquarius OSSE attempts to capture the influence of various error sources, such as land surface heterogeneity, instrument noise, and retrieval ancillary parameter uncertainty, all on the accuracy of Aquarius surface soil moisture retrievals. In order to assess the impact of these error sources on the estimated volumetric soil moisture, a quantitative error analysis is performed by comparison of footprint-scale synthetic soil moisture with 'true' soil moisture fields obtained from the direct aggregation of the original 1-km soil moisture field input to the forward model. Results show that, in heavily vegetated areas, soil moisture retrievals have a positive bias that can be suppressed with an alternative aggregation strategy for ancillary parameter vegetation water content (VWC). Retrieval accuracy was also evaluated when adding errors to 1-km VWC (which are intended to account for errors in VWC derived from remote sensing data). For soil moisture retrieval root-mean-square error on the order of 0.05 m3/m3, the error in VWC should be less than 12%. © 1980-2012 IEEE.  |l eng 
593 |a Instituto de Astronomía y Física Del Espacio, C1428ZAA Buenos Aires, Argentina 
593 |a Hydrology and Remote Sensing Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, United States 
690 1 0 |a AQUARIUS 
690 1 0 |a OBSERVING SYSTEM SIMULATION EXPERIMENT (OSSE) 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a ERROR ANALYSIS 
690 1 0 |a EXPERIMENTS 
690 1 0 |a REMOTE SENSING 
690 1 0 |a AQUARIUS 
690 1 0 |a MICROWAVE EMISSION MODELS 
690 1 0 |a OBSERVING SYSTEM SIMULATION EXPERIMENTS 
690 1 0 |a QUANTITATIVE ERROR ANALYSIS 
690 1 0 |a SOIL MOISTURE RETRIEVALS 
690 1 0 |a SURFACE SOIL MOISTURE RETRIEVAL 
690 1 0 |a VEGETATION WATER CONTENTS (VWC) 
690 1 0 |a VOLUMETRIC SOIL MOISTURES 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a ACCURACY ASSESSMENT 
690 1 0 |a AQUARIUS 
690 1 0 |a DATA ASSIMILATION 
690 1 0 |a ERROR ANALYSIS 
690 1 0 |a MICROWAVE RADIATION 
690 1 0 |a NUMERICAL MODEL 
690 1 0 |a RADIATIVE TRANSFER 
690 1 0 |a RADIOMETER 
690 1 0 |a SATELLITE MISSION 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a VEGETATION COVER 
690 1 0 |a WATER CONTENT 
690 1 0 |a ARKANSAS BASIN 
690 1 0 |a RED BASIN [UNITED STATES] 
690 1 0 |a UNITED STATES 
700 1 |a Crow, W.T. 
700 1 |a Grings, Francisco Matías 
700 1 |a Perna, P. 
700 1 |a Maas, M. 
700 1 |a Karszenbaum, H. 
773 0 |d Institute of Electrical and Electronics Engineers Inc., 2014  |g v. 52  |h pp. 6086-6094  |k n. 10  |p IEEE Trans Geosci Remote Sens  |x 01962892  |w (AR-BaUEN)CENRE-1633  |t IEEE Transactions on Geoscience and Remote Sensing 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901978232&doi=10.1109%2fTGRS.2013.2294915&partnerID=40&md5=49c8f44d34be1134eae955cd4b410a3d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/TGRS.2013.2294915  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01962892_v52_n10_p6086_Bruscantini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01962892_v52_n10_p6086_Bruscantini  |y Registro en la Biblioteca Digital 
961 |a paper_01962892_v52_n10_p6086_Bruscantini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84989