Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation

Nonexponential distance dependence of the apparent electron-transfer (ET) rate has been reported for a variety of redox proteins immobilized on biocompatible electrodes, thus posing a physicochemical challenge of possible physiological relevance. We have recently proposed that this behavior may aris...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvarez-Paggi, D.
Otros Autores: Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., Rákhely, G., Hildebrandt, P., Murgida, D.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13742caa a22011297a 4500
001 PAPER-24282
003 AR-BaUEN
005 20230518205606.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84878084932 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCBF 
100 1 |a Alvarez-Paggi, D. 
245 1 0 |a Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation 
260 |b American Chemical Society  |c 2013 
270 1 0 |m Hildebrandt, P.; Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany; email: hildebrandt@chem.tu-berlin.de 
506 |2 openaire  |e Política editorial 
504 |a (2010) J. Am Chem. Soc., 132, p. 5769. , 5778 
504 |a Gray, H.B., Winkler, J.R., Electron Transfer in Proteins (1996) Annu. Rev. Biochem., 65, pp. 537-561 
504 |a Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., An Electrochemical Approach to Investigate Gated Electron Transfer Using a Physiological Model System: Cytochrome c Immobilized on Carboxylic Acid-terminated Alkanethiol Self-assembled Monolayers on Gold Electrodes (2000) J. Phys. Chem. B, 104, pp. 2759-2766 
504 |a Chi, Q.J., Zhang, J.D., Andersen, J.E.T., Ulstrup, J., Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates (2001) J. Phys. Chem. B, 105, pp. 4669-4679 
504 |a Davis, K.L., Waldeck, D.H., Effect of Deuterium Substitution on Electron Transfer at Cytochrome-SAM interfaces (2008) J. Phys. Chem. B, 112, pp. 12498-12507 
504 |a El Kasmi, A., Wallace, J.M., Bowden, E.F., Binet, S.M., Linderman, R.J., Controlling Interfacial Electron-Transfer Kinetics of Cytochrome c with Mixed Self-assembled Monolayers (1998) J. Am. Chem. Soc., 120, pp. 225-226 
504 |a Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., Direct Observation of the Gating Step in Protein Electron Transfer: Electric-field-controlled Protein Dynamics (2008) J. Am. Chem. Soc., 130, pp. 9844-9848 
504 |a Molinas, M.F., De Candia, A., Szajnman, S.H., Rodríguez, J.B., Martí, M., Pereira, M., Teixeira, M., Murgida, D.H., Electron Transfer Dynamics of Rhodothermus marinus caa 3 Cytochrome c Domains on Biomimetic Films (2011) Phys. Chem. Chem. Phys., 13 (40), pp. 18088-18098 
504 |a Murgida, D.H., Hildebrandt, P., Proton-Coupled Electron Transfer of Cytochrome c (2001) J. Am. Chem. Soc., 123, pp. 4062-4068 
504 |a Niki, K., Hardy, W.R., Hill, M.G., Li, H., Sprinkle, J.R., Margoliash, E., Fujita, K., Gray, H.B., Coupling to Lysine-13 Promotes Electron Tunneling Through Carboxylate-terminated Alkanethiol Self-assembled Monolayers to Cytochrome c (2003) J. Phys. Chem. B, 107, pp. 9947-9949 
504 |a Wei, J.J., Liu, H.Y., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., Electron-transfer Dynamics of Cytochrome c: A Change in the Reaction Mechanism with Distance (2002) Angew. Chem., Int. Ed., 41 (24), pp. 4700-4703 
504 |a Xu, J.S., Bowden, E.F., Determination of the Orientation of Adsorbed Cytochrome c on Carboxyalkanethiol Self-assembled Monolayers by in situ Differential Modification (2006) J. Am. Chem. Soc., 128, pp. 6813-6822 
504 |a Alvarez Paggi, D., Martin, D.F., De Biase, P.M., Hildebrandt, P., Marti, M.A., Murgida, D.H., Molecular Basis of Coupled Protein and Electron Transfer Dynamics of Cytochrome c in Biomimetic Complexes (2010) J. Am. Chem. Soc., 132, pp. 5769-5778 
504 |a Lange, C., Hunte, C., Crystal Structure of the Yeast Cytochrome bc 1 Complex with its Bound Substrate Cytochrome c (2002) Proc. Natl. Acad. Sci. U.S.A., 99 (5), pp. 2800-2805 
504 |a Pelletier, H., Kraut, J., Crystal Structure of a Complex between Electron Transfer Partners, Cytochrome c Peroxidase and Cytochrome c (1992) Science, 258 (5089), pp. 1748-1755 
504 |a Roberts, V.A., Pique, M.E., Definition of the Interaction Domain for Cytochrome c on Cytochrome c Oxidase. III. Prediction of the Docked Complex by a Complete, Systematic Search (1999) J. Biol. Chem., 274 (53), pp. 38051-38060 
504 |a Lao, K., Franzen, S., Steffen, M., Lambright, D., Stanley, R., Boxer, S.G., Effects of Applied Electric Fields on the Quantum Yields for the Initial Electron Transfer Steps in Bacterial Photosynthesis II. Dynamic Stark Effect (1995) Chem. Phys., 197 (3), pp. 259-275 
504 |a Pudlak, M., Pincak, R., Influence of the Electric Field on the Electron Transport in Photosynthetic Reaction Centers (2011) Eur. Phys. J. e, 34 (3), pp. 1-8 
504 |a Kim, Y.C., Furchtgott, L.A., Hummer, G., Biological Proton Pumping in an Oscillating Electric Field (2009) Phys. Rev. Lett., 103 (26), pp. 268102-268112 
504 |a Abriata, L.A., Álvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J., Murgida, D.H., Alternative Ground States Enable Pathway Switching in Biological Electron Transfer (2012) Proc. Natl. Acad. Sci. U.S.A., 109 (43), pp. 17348-17353 
504 |a Feng, J.J., Hildebrandt, P., Murgida, D.H., Silver Nanocoral Structures on Electrodes: A Suitable Platform for Protein-based Bioelectronic Devices (2008) Langmuir, 24, pp. 1583-1586 
504 |a Willner, B., Katz, E., Willner, I., Electrical Contacting of Redox Proteins by Nanotechnological Means (2006) Curr. Opin. Biotechnol., 17 (6), pp. 589-596 
504 |a Tenger, K., Khoroshyy, P., Kovács, K.L., Zimányi, L., Rákhely, G., Improved System for Heterologous Expression of Cytochrome c Mutants in Escherichia coli (2007) Acta Biol. Hung., 58, pp. 23-35 
504 |a Tenger, K., Khoroshyy, P., Rákhely, G., Zimányi, L., Maturation of a Eukaryotic Cytochrome c in the Cytoplasm of Escherichia coli Without the Assistance by a Dedicated Biogenesis Apparatus (2010) J. Bioenerg. Biomembr., 42 (2), pp. 125-133 
504 |a Murgida, D.H., Hildebrandt, P., Heterogeneous Electron Transfer of Cytochrome c on Coated Silver Electrodes. Electric Field Effects on Structure and Redox Potential (2001) J. Phys. Chem. B, 105, pp. 1578-1586 
504 |a Dopner, S., Hildebrandt, P., Mauk, A.G., Lenk, H., Stempfle, W., Analysis of Vibrational Spectra of Multicomponent Systems. Application to pH-dependent Resonance Raman Spectra of Ferricytochrome c (1996) Spectrochim. Acta A, 52 (5), pp. 573-584 
504 |a Bryant, M.A., Pemberton, J.E., Surface Raman Scattering of Self-assembled Monolayers Formed from 1-alkanethiols at Silver Electrodes (1991) J. Am. Chem. Soc., 113, pp. 3629-3637 
504 |a Bushnell, G.W., Louie, G.V., Brayer, G.D., High-resolution Three-dimensional Structure of Horse Heart Cytochrome c (1990) J. Mol. Biol., 214 (2), pp. 585-595 
504 |a Rai, B., Sathish, P., Malhotra, C.P., Pradip, Ayappa, K.G., Molecular Dynamic Simulations of Self-assembled Alkylthiolate Monolayers on an Au(111) Surface (2004) Langmuir, 20, pp. 3138-3144 
504 |a Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., Electron-tunneling Pathways in Proteins (1992) Science, 258 (5089), pp. 1740-1741 
504 |a Koppenol, W.H., Rush, J.D., Mills, J.D., Margoliash, E., The Dipole-moment of Cytochrome c (1991) Mol. Biol. Evol., 8 (4), pp. 545-558 
504 |a Paggi, D.A., Martin, D.F., Kranich, A., Hildebrandt, P., Marti, M.A., Murgida, D.H., Computer Simulation and SERR Detection of Cytochrome c Dynamics at SAM-coated Electrodes (2009) Electrochim. Acta, 54 (22), pp. 4963-4970 
504 |a Murgida, D.H., Hildebrandt, P., Electron-transfer Processes of Cytochrome c at Interfaces. New Insights by Surface-enhanced Resonance Raman Spectroscopy (2004) Acc. Chem. Res., 37, pp. 854-861 
504 |a Wallace, C.J., Proudfoot, A.E., On the Relationship between Oxidation-Reduction Potential and Biological Activity in Cytochrome c Analogues. Results from Four Novel Two-Fragment Complexes (1987) Biochem. J., 245 (3), pp. 773-779 
504 |a Oellerich, S., Wackerbarth, H., Hildebrandt, P., Spectroscopic Characterization of Nonnative Conformational States of Cytochrome c (2002) J. Phys. Chem. B, 106, pp. 6566-6580 
504 |a Getz, E.B., Xiao, M., Chakrabarty, T., Cooke, R., Selvin, P.R., A Comparison between the Sulfhydryl Reductants Tris (2-carboxyethyl) Phosphine and Dithiothreitol for Use in Protein Biochemistry (1999) Anal. Biochem., 273 (1), pp. 73-80 
504 |a Finklea, H.O., Hanshew, D.D., Electron-Transfer Kinetics in Organized Thiol Monolayers with Attached Pentaammine (Pyridine) Ruthenium Redox Centers (1992) J. Am. Chem. Soc., 114, pp. 3173-3181 
504 |a Xu, J., Li, H., Zhang, Y., Relationship between Electronic Tunneling Coefficient and Electrode Potential Investigated by Using Self-assembled Alkanethiol Monolayers on Gold Electrodes (1993) J. Phys. Chem., 97, pp. 11497-11500 
504 |a Smalley, J.F., Feldberg, S.W., Chidsey, C.E.D., Linford, M.R., Newton, M.D., Liu, Y.P., The Kinetics of Electron Transfer through Ferrocene-terminated Alkanethiol Monolayers on Gold (1995) J. Phys. Chem., 99, pp. 13141-13149 
504 |a Smith, C.P., White, H.S., Theory of the Interfacial Potential Distribution and Reversible Voltammetric Response of Electrodes Coated with Electroactive Molecular Films (1992) Anal. Chem., 64, pp. 2398-2405 
504 |a Yue, H.J., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., On the Electron Transfer Mechanism between Cytochrome c and Metal Electrodes. Evidence for Dynamic Control at Short Distances (2006) J. Phys. Chem. B, 110, pp. 19906-19913 
504 |a Ly, H.K., Marti, M.A., Martin, D.F., Alvarez-Paggi, D., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., Thermal Fluctuations Determine the Electron-Transfer Rates of Cytochrome c in Electrostatic and Covalent Complexes (2010) ChemPhysChem, 11 (6), pp. 1225-1235 
520 3 |a Nonexponential distance dependence of the apparent electron-transfer (ET) rate has been reported for a variety of redox proteins immobilized on biocompatible electrodes, thus posing a physicochemical challenge of possible physiological relevance. We have recently proposed that this behavior may arise not only from the structural and dynamical complexity of the redox proteins but also from their interplay with strong electric fields present in the experimental setups and in vivo (J. Am Chem. Soc. 2010, 132, 5769-5778). Therefore, protein dynamics are finely controlled by the energetics of both specific contacts and the interaction between the protein's dipole moment and the interfacial electric fields. In turn, protein dynamics may govern electron-transfer kinetics through reorientation from low to high donor-acceptor electronic coupling orientations. Here we present a combined computational and experimental study of WT cytochrome c and the surface mutant K87C adsorbed on electrodes coated with self-assembled monolayers (SAMs) of varying thickness (i.e., variable strength of the interfacial electric field). Replacement of the positively charged K87 by a neutral amino acid allowed us to disentangle protein dynamics and electron tunneling from the reaction kinetics and to rationalize the anomalous distance dependence in terms of (at least) two populations of distinct average electronic couplings. Thus, it was possible to recover the exponential distance dependence expected from ET theory. These results pave the way for gaining further insight into the parameters that control protein electron transfer. © 2013 American Chemical Society.  |l eng 
593 |a INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, piso 3, C1428EHA-Buenos Aires, Argentina 
593 |a Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany 
593 |a Biological Research Center, Institute of Biophysics, Temesvári krt. 62, H-6726 Szeged, Hungary 
593 |a Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Hungary 
690 1 0 |a AMINO ACIDS 
690 1 0 |a DYNAMICS 
690 1 0 |a ELECTRIC FIELDS 
690 1 0 |a ELECTRODES 
690 1 0 |a ELECTRON TUNNELING 
690 1 0 |a REACTION KINETICS 
690 1 0 |a SELF ASSEMBLED MONOLAYERS 
690 1 0 |a DYNAMICAL COMPLEXITY 
690 1 0 |a ELECTRON TRANSFER 
690 1 0 |a ELECTRON TRANSFER KINETICS 
690 1 0 |a ELECTRONIC COUPLING 
690 1 0 |a EXPERIMENTAL STUDIES 
690 1 0 |a POSITIVELY CHARGED 
690 1 0 |a STRONG ELECTRIC FIELDS 
690 1 0 |a VARYING THICKNESS 
690 1 0 |a PROTEINS 
700 1 |a Meister, W. 
700 1 |a Kuhlmann, U. 
700 1 |a Weidinger, I. 
700 1 |a Tenger, K. 
700 1 |a Zimányi, L. 
700 1 |a Rákhely, G. 
700 1 |a Hildebrandt, P. 
700 1 |a Murgida, D.H. 
773 0 |d American Chemical Society, 2013  |g v. 117  |h pp. 6061-6068  |k n. 20  |p J Phys Chem B  |x 15206106  |w (AR-BaUEN)CENRE-5879  |t Journal of Physical Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878084932&doi=10.1021%2fjp400832m&partnerID=40&md5=a0be8add131d827e83bd010fe4d38cde  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp400832m  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15206106_v117_n20_p6061_AlvarezPaggi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v117_n20_p6061_AlvarezPaggi  |y Registro en la Biblioteca Digital 
961 |a paper_15206106_v117_n20_p6061_AlvarezPaggi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85235