Towards a global classification of excitable reaction-diffusion systems
Patterns in reaction-diffusion systems near primary bifurcations can be studied locally and classified by means of amplitude equations. This is not possible for excitable reaction-diffusion systems. In this paper we propose a global classification of two variable excitable reaction-diffusion systems...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2000
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 05143caa a22007217a 4500 | ||
---|---|---|---|
001 | PAPER-2431 | ||
003 | AR-BaUEN | ||
005 | 20250213090715.0 | ||
008 | 190411s2000 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-0034614912 | |
030 | |a PYLAA | ||
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Dawson, S.P. | |
245 | 1 | 0 | |a Towards a global classification of excitable reaction-diffusion systems |
260 | |c 2000 | ||
270 | 1 | 0 | |m Dawson, S.P.; Departamento de Fisica, Facultad de Ciencias Exactas y Nat., Ciudad Universitaria, Pabellon I, (1428) Buenos Aires, Argentina; email: silvina@df.uba.ar |
504 | |a Cross, M.C., Hohenberg, P.C., (1993) Rev. Mod. Phys., 65, p. 851 | ||
504 | |a Lee, K.J., (1993) Science, 261, p. 192 | ||
504 | |a Lee, K.J., (1994) Nature, 369, p. 215 | ||
504 | |a Lee, K.J., Swinney, H.L., (1995) Phys. Rev. E, 51, p. 1899 | ||
504 | |a Pearson, J.E., (1993) Science, 261, p. 189 | ||
504 | |a Muratov, C.B., Osipov, V.V., (1996) Phys. Rev. E, 54, p. 4860 | ||
504 | |a Guckenheimer, J., Holmes, P., (1986), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York; Ondarcuhu, T., (1993) Phys. Rev. Lett., 70, pp. 3892-3895 | ||
504 | |a Fitzhugh, R., (1960) J. Gen. Physiol., 43, p. 876 | ||
504 | |a Eguia, M., Phys. Rev. E. | ||
504 | |a Hirsch, M.W., Smale, S., (1974), p. 239. , Differential equations, dynamical systems, and linear algebra, Academic Press, San Diego; D'Angelo, M.V., Dawson, S.P., Pearson, J.E., in preparation; Edblom, E.C., Orban, M., Epstein, I.R., (1986) J. Am. Chem. Soc., 108, p. 2826 | ||
504 | |a Gaspar, V., Showalter, K., (1990) J. Phys. Chem., 94, p. 4973 | ||
504 | |a Gaspar, V., Showalter, K., (1987) J. Phys. Chem., 109, p. 4869 | ||
504 | |a Reynolds, W., (1994) Phys. Rev. Lett., 72, p. 2797 | ||
504 | |a Reynolds, W., (1997) Phys. Rev. E, 56, p. 185 | ||
504 | |a Hagberg, A., Meron, E., (1994) Chaos, 4, p. 477 | ||
504 | |a Doelman, A., Kaper, T.J., Zegeling, P.A., (1997) Nonlinearity, 10, pp. 523-563 | ||
504 | |a Pearson, J.E., Horsthemke, W., (1989) J. Chem. Phys., 90, p. 1588 | ||
504 | |a Argentina, M., Coullet, P., Mahadevan, L., (1997) Phys. Rev. Lett., 79, p. 2803 | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a Patterns in reaction-diffusion systems near primary bifurcations can be studied locally and classified by means of amplitude equations. This is not possible for excitable reaction-diffusion systems. In this paper we propose a global classification of two variable excitable reaction-diffusion systems. In particular, we claim that the topology of the underlying two-dimensional homogeneous dynamics organizes the system's behavior. We believe that this classification provides a useful tool for the modeling of any real system whose microscopic details are unknown. (C) 2000 Published by Elsevier Science B.V. |l eng | |
536 | |a Detalles de la financiación: Universidad de Buenos Aires | ||
536 | |a Detalles de la financiación: Fundación Antorchas | ||
536 | |a Detalles de la financiación: Los Alamos National Laboratory | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
536 | |a Detalles de la financiación: This work was supported by the University of Buenos Aires, CONICET and Fundación Antorchas and by the Los Alamos National Laboratory LDRD program. We acknowledge useful conversations with G. Mindlin, D. Campbell, C. Doering, and B. Hasslacher. We would especially like to thank H.L Swinney and K.J. Lee for providing figure two. | ||
593 | |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Pabellón i, (1428) Buenos Aires, Argentina | ||
593 | |a Applied Theoretical and Computational Physics, Los Alamos National Laboratory, XCM MS F645, Los Alamos, NM 87545, United States | ||
690 | 1 | 0 | |a ARITHMETIC |
690 | 1 | 0 | |a ARTICLE |
690 | 1 | 0 | |a CLASSIFICATION |
690 | 1 | 0 | |a DIFFUSION |
690 | 1 | 0 | |a DYNAMICS |
690 | 1 | 0 | |a EXCITATION |
690 | 1 | 0 | |a FLOW |
690 | 1 | 0 | |a GEOMETRY |
690 | 1 | 0 | |a MATHEMATICAL ANALYSIS |
690 | 1 | 0 | |a MODEL |
700 | 1 | |a D'Angelo, María Verónica | |
700 | 1 | |a Pearson, J.E. | |
773 | 0 | |d 2000 |g v. 265 |h pp. 346-352 |k n. 5-6 |p Phys Lett Sect A Gen At Solid State Phys |x 03759601 |w (AR-BaUEN)CENRE-348 |t Physics Letters, Section A: General, Atomic and Solid State Physics | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034614912&doi=10.1016%2fS0375-9601%2800%2900008-6&partnerID=40&md5=65597accdb4267d4c467f4237226bb90 |x registro |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1016/S0375-9601(00)00008-6 |x doi |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_03759601_v265_n5-6_p346_Dawson |x handle |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03759601_v265_n5-6_p346_Dawson |x registro |y Registro en la Biblioteca Digital |
961 | |a paper_03759601_v265_n5-6_p346_Dawson |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
963 | |a VARI |