Isolation of acetylated bile acids from the sponge Siphonochalina fortis and DNA damage evaluation by the comet assay

From the organic extracts of the sponge Siphonochalina fortis, collected at Bahia Bustamante, Chubut, Argentina, three major compounds were isolated and identified as deoxycholic acid 3, 12-diacetate (1), cholic acid 3, 7, 12-triacetate (2) and cholic acid, 3, 7, 12-triacetate. (3). This is the firs...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cano, L.P.P
Otros Autores: Bartolotta, S.A, Casanova, N.A, Siless, G.E, Portmann, E., Schejter, L., Palermo, J.A, Carballo, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Inc. 2013
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11601caa a22013337a 4500
001 PAPER-24380
003 AR-BaUEN
005 20230518205613.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84884998901 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a STEDA 
100 1 |a Cano, L.P.P. 
245 1 0 |a Isolation of acetylated bile acids from the sponge Siphonochalina fortis and DNA damage evaluation by the comet assay 
260 |b Elsevier Inc.  |c 2013 
270 1 0 |m Bartolotta, S.A.; CIGETOX (Citogenética Humana y Genética Toxicológica), INFIBIOC (Instituto de Fisiopatología y Bioquímica Clínica), Universidad de Buenos Aires (UBA), Junín 956, 1113 CABA Buenos Aires, Argentina; email: susana_bartolotta@yahoo.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Thomas, T.R., Kavlekar, D.P., Loka Bharathi, P.A., Marine drugs from sponge-microbe association - A review (2010) Mar Drugs, 8 (4), pp. 1417-1468 
504 |a Thakur, N.L., Muller, W.E.G., Biotechnological potential of marine sponges (2004) Curr Sci, 86, pp. 1506-1512 
504 |a Wang, G., Diversity and biotechnological potential of the sponge-associated microbial consortia (2006) J Ind Microbiol Biotechnol, 33, pp. 545-551 
504 |a Faimali, M., Sepcić, K., Turk, T., Geraci, S., Non-toxic antifouling activity of polymeric 3-alkylpyridinium salts from the Mediterranean sponge Reniera sarai (Pulitzer-Finali) (2003) Biofouling, 19 (1), pp. 47-56 
504 |a Qian, P.Y., Xu, Y., Fusetani, N., Natural products as antifouling compounds: Recent progress and future perspectives (2010) Biofouling, 26, pp. 223-234 
504 |a Bartolotta, S.A., Scuteri, M.A., Hick, A.S., Palermo, J., Rodriguez Brasco, M.F., Hajdu, E., Et Alcarballo, M.A., Evaluation of genotoxic biomarkers in extracts of marine sponges from Argentinean South Sea (2009) JEMBE, 369, pp. 144-147 
504 |a Lievens, S.C., Hope, H., Molinski, T.F., New 3-oxo-chol-4-en-24-oic acids from the marine soft coral Eleutherobia sp (2004) J Nat Prod, 67, pp. 2130-2132 
504 |a Sung, P.J., Fang, L.S., Chen, Y.P., Chen, W.C., Hu, W.P., Ho, C.L., 5b-Steroids from the gorgonian coral Junceella fragilis (Ellisellidae) (2006) Biochem Syst Ecol, 34, pp. 64-70 
504 |a Chen, W.C., Sheu, J.H., Fang, L.S., Hu, W.P., Sung, P.J., 3a,7a,12a-Triacetoxy-5b-cholanic acid, a steroid from the Formosan soft coral Alcyonium sp (2006) (Alcyoniidae). Nat Prod Res, 20, pp. 748-753 
504 |a Lu, Z., Van Wagoner, R.M., Harper, M.K., Hooper, J.N., Ireland, C.M., Two ring-Aaromatized bile acids from the marine sponge Sollasella moretonensis (2010) Nat Prod Commun, 5 (10), pp. 1571-1574 
504 |a Maneerat, S., Nitoda, T., Kanzaki, H., Kawai, F., Bile acids are new products of a marine bacterium, Myroides sp (2005) Strain SM1. Appl Microbiol Biotechnol, 67, pp. 679-683 
504 |a Dixon, D., Pruski, A., Dixon, L., Jha, A., Marine invertebrate eco-genotoxicology: A methodological overview (2002) Mutagenesis, 17 (6), pp. 495-507 
504 |a Sharma, U., Srivastava, K., Puri, S.K., Singh, C., Amino steroids as antimalarial agents (2008) Med Chem Res, 17, pp. 326-334 
504 |a Brossard, D., El Kihel, L., Clement, M., Sebbahi, W., Khalid, M., Roussakis, Ch., Synthesis of bile acid derivatives and in vitro cytotoxic activity with proapoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines (2010) Eur J Med Chem, 45, pp. 2912-2918 
504 |a Tochtrop, G.P., Dekoster, G.T., Cistola, D.P., Covey, D.F., A simple efficient synthesis of 23 24-13C2-labeled bile salts as NMR probes of protein-ligand interactions (2002) Bioorg Med Chem Lett, 12, pp. 433-435 
504 |a Hill, R.A., Kirk, D.N., Makin, H.L., Murphy, G.M., (1991) Dictionary of Steroids, Chemical Data, Structures and Bibliographies, p. 879. , Chapman Hall 
504 |a Mc Gahon, A.S., Martin, R., Bissonnette, A., Mahboubi, Y., Shi, R., Mogil, W., The end of the (cell) line methods for the study of apoptosis in vitro (1995) Method Cell Biol, 46, pp. 153-185 
504 |a Singh, N.M., McCoy, M., Schneider, E., A simple technique for quantitation of low levels of DNA damage in individual cells (1988) Exp Cell Res, 175, pp. 184-191 
504 |a Thakur, N.L., Hentschel, U., Krasko, A., Anil, A.C., Muller, W.E.G., Antibacterial activity of the sponge Suberites domuncula and its primmorphs: Potentia basis for chemical defense (2003) Aqua Microbiol Ecol, 31, pp. 77-83 
504 |a Muller, W.E.G., Schroder, H.C., Wiens, M., Perovic-Ottstadt, S., Batel, R., Muller, I.M., Traditional and modern biomedical prospecting: Part II - The benefits approaches for a sustainable exploitation of biodiversity (secondary metabolites and biomaterials from sponges) (2004) Evid Based Complement Alternat Med, 1 (2), pp. 133-144. , http://dx.doi.org/10.1093/ecam/neh030 
504 |a Thoms, C., Schupp, P., Chemical defense strategies in sponges: A review (2007) Porifera Research: Biodiversity, Innovation and Sustainability, 28. , Custodio MR, Hajdu G, Lobo-Hajdu E, Muricy G, editors. Museu Nacional, Rio de Janeiro: Serie Livros 
504 |a De Flora, S., Bagnasco, M., Bennicelli, C., Camoirano, A., Bojnemirski, A., Kurelec, B., Biotransformation of genotoxic agents in marine sponges. Mechanisms and modulation (1995) Mutagenesis, 10 (4), pp. 357-364 
504 |a Kurelec, B., Krca, S., Pivcevic, B., Ugarković, D., Bachmann, M., Imsiecke, G., Expression of P-glycoprotein gene in marine sponges. Identification and characterization of the 1 125 kDa drug-binding glycoprotein (1992) Carcinogenesis, 13, pp. 69-76 
504 |a Kim, D., Lee, J.S., Kim, J., Kang, S.J., Yoon, J.H., Kim, W.G., Biosynthesis of bile acids in a variety of marine bacterial taxa (2007) J Microbiol Biotechnol, 17, pp. 403-407 
504 |a Sera, Y., Adachi, K., Shizuri, Y., A new epidioxy sterol as an antifouling substance from a palauan marine sponge, Lendenfeldia chondrodes (1999) J Nat Prod, 62 (1), pp. 152-154 
504 |a Singh, K.S., Kaminsky, W., Isolation and X-ray structure of deoxycholic acid from the Sponge Ircinia sp (2011) Nat Prod Commun, 6 (9), pp. 1237-1238 
504 |a Li, H., Shinde, P., Lee, H.J., Yoo, E.S., Lee, C.O., Hong, J., Bile acid derivatives from a sponge-associated Phychrobacter sp (2009) Arch Pharm Res, 32 (6), pp. 857-862 
504 |a Carballo, M.A., Lopez Nigro, M., (2006) Genetica Toxicologica., , De Los Cuatro Vientos (Ed.). Buenos Aires, Argentina 
520 3 |a From the organic extracts of the sponge Siphonochalina fortis, collected at Bahia Bustamante, Chubut, Argentina, three major compounds were isolated and identified as deoxycholic acid 3, 12-diacetate (1), cholic acid 3, 7, 12-triacetate (2) and cholic acid, 3, 7, 12-triacetate. (3). This is the first report of acetylated bile acids in sponges and the first isolation of compound 3 as a natural product. The potential induction of DNA lesions by the isolated compounds was investigated using the comet assay in lymphocytes of human peripheral blood as in vitro model. The results showed that the administration of the bile acid derivatives would not induce DNA damages, indicating that acetylated bile acids are nontoxic metabolites at the tested concentrations. Since the free bile acids were not detected, it is unlikely that the acetylated compounds may be part of the sponge cells detoxification mechanisms. These results may suggest a possible role of acetylated bile acids as a chemical defense mechanism, product of a symbiotic relationship with microorganisms, which would explain their seasonal and geographical variation, and their influence on the previously observed genotoxicity of the organic extract of S. fortis. © 2013 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Manitoba Arts Council 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires 
536 |a Detalles de la financiación: Prog 2011-2014, 20020100100123 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP N° 516-2009 
536 |a Detalles de la financiación: Research at the University of Buenos Aires was supported by grants from CONICET ( PIP N° 516-2009 ) and UBACYT ( X163 Prog. 2008–2010 ) and 20020100100123 ( Prog 2011-2014 ) awarded to JAP, and by UBACYT (grant 20020100100123 , Prog 2011-2014 ) awarded to MAC. This is INIDEP Contribution N° 1782 . Appendix A 
593 |a UMYMFOR, Departamento de Química Orgánica, Universidad de Buenos Aires, Ciudad, Universitaria Pab. 2, 1428 Buenos Aires, Argentina 
593 |a CIGETOX (Citogenética Humana y Genética Toxicológica), INFIBIOC (Instituto de Fisiopatología y Bioquímica Clínica), Universidad de Buenos Aires (UBA), Junín 956, 1113 CABA Buenos Aires, Argentina 
593 |a Laboratorio de Bentos, Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo 1, B7602HSA Mar del Plata, Argentina 
690 1 0 |a ACETYLATED BILE ACIDS 
690 1 0 |a BACTERIA 
690 1 0 |a CHEMICAL DEFENSE 
690 1 0 |a COMET ASSAY 
690 1 0 |a DNA DAMAGE 
690 1 0 |a MARINE SPONGES 
690 1 0 |a BILE ACID 
690 1 0 |a CHOLIC ACID 3,7 DIACETATE 
690 1 0 |a CHOLIC ACID 3,7,12 TRIACETATE 
690 1 0 |a DEOXYCHOLIC ACID 3,12 DIACETATE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ACETYLATION 
690 1 0 |a ARTICLE 
690 1 0 |a CELL VIABILITY 
690 1 0 |a COMET ASSAY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DETOXIFICATION 
690 1 0 |a DNA DAMAGE 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a METABOLITE 
690 1 0 |a NONHUMAN 
690 1 0 |a PERIPHERAL LYMPHOCYTE 
690 1 0 |a SIPHONOCHALINA FORTIS 
690 1 0 |a SPONGE (PORIFERA) 
690 1 0 |a BACTERIA (MICROORGANISMS) 
690 1 0 |a SIPHONOCHALINA 
690 1 0 |a ACETYLATED BILE ACIDS 
690 1 0 |a BACTERIA 
690 1 0 |a CHEMICAL DEFENSE 
690 1 0 |a COMET ASSAY 
690 1 0 |a DNA DAMAGE 
690 1 0 |a MARINE SPONGES 
690 1 0 |a ANIMALS 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CELLS, CULTURED 
690 1 0 |a CHOLIC ACIDS 
690 1 0 |a COMET ASSAY 
690 1 0 |a DNA DAMAGE 
690 1 0 |a DRUG EVALUATION, PRECLINICAL 
690 1 0 |a HUMANS 
690 1 0 |a LYMPHOCYTES 
690 1 0 |a MUTAGENS 
650 1 7 |2 spines  |a PORIFERA 
700 1 |a Bartolotta, S.A. 
700 1 |a Casanova, N.A. 
700 1 |a Siless, G.E. 
700 1 |a Portmann, E. 
700 1 |a Schejter, L. 
700 1 |a Palermo, J.A. 
700 1 |a Carballo, M.A. 
773 0 |d Elsevier Inc., 2013  |g v. 78  |h pp. 982-986  |k n. 10  |p Steroids  |x 0039128X  |w (AR-BaUEN)CENRE-577  |t Steroids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884998901&doi=10.1016%2fj.steroids.2013.05.020&partnerID=40&md5=087a77e79369e53e23585fb626ea6ff9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.steroids.2013.05.020  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0039128X_v78_n10_p982_Cano  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0039128X_v78_n10_p982_Cano  |y Registro en la Biblioteca Digital 
961 |a paper_0039128X_v78_n10_p982_Cano  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85333