The irrationality exponents of computable numbers
We establish that there exist computable real numbers whose irrationality exponent is not computable. © 2015 American Mathematical Society.
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
American Mathematical Society
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 03473caa a22004577a 4500 | ||
|---|---|---|---|
| 001 | PAPER-24498 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205621.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84955475494 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Becher, V. | |
| 245 | 1 | 4 | |a The irrationality exponents of computable numbers |
| 260 | |b American Mathematical Society |c 2016 | ||
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Besicovitch, A.S., Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers (1934) J. London Math. Soc, 2, p. 126. , MR1574327 | ||
| 504 | |a Bugeaud, Y., Diophantine approximation and Cantor sets (2008) Math. Ann, 341 (3), pp. 677-684. , MR2399165 (2009h:11116) | ||
| 504 | |a Falconer, K., (2003) Fractal Geometry, , 2nd ed., Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, NJ, MR2118797 (2006b:28001) | ||
| 504 | |a Jarník, V., (1928) Prace Mat.-Fiz, 36, pp. 91-106. , Zur metrischen theorie der diophantischen approximation, 1929 | ||
| 504 | |a Vojtˇech, J., Uber die simultanen diophantischen Approximationen (German) (1931) Math. Z, 33 (1), pp. 505-543. , MR1545226 | ||
| 504 | |a Wolfgang, M., Schmidt, Diophantine approximation (1980) Lecture Notes in Mathematics, 785. , Springer, Berlin, MR568710 (81j:10038) | ||
| 504 | |a Shallit, J.O., Simple continued fractions for some irrational numbers. II (1982) J. Number Theory, 14 (2), pp. 228-231. , MR655726 (84a:10035) | ||
| 504 | |a Soare, R.I., Recursive theory and Dedekind cuts (1969) Trans. Amer. Math. Soc., 140, pp. 271-294. , MR0242667 (39 #3997) | ||
| 504 | |a Robert, I., (1987) Soare, Recursively Enumerable Sets and Degrees, a Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic, , Springer-Verlag, Berlin, MR882921 (88m:03003) | ||
| 520 | 3 | |a We establish that there exist computable real numbers whose irrationality exponent is not computable. © 2015 American Mathematical Society. |l eng | |
| 593 | |a Departamento de Computacion, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina | ||
| 593 | |a UFR de Mathématique et d’Informatique, Université de Strasbourg, 7 rue René Descartes, Strasbourg Cedex, 67084, France | ||
| 593 | |a Department of Mathematics, University of California Berkeley, 970 Evans Hall, Berkeley, CA 94720, United States | ||
| 690 | 1 | 0 | |a CANTOR SET |
| 690 | 1 | 0 | |a COMPUTABILITY |
| 690 | 1 | 0 | |a IRRATIONALITY EXPONENT |
| 700 | 1 | |a Bugeaud, Y. | |
| 700 | 1 | |a Slaman, T.A. | |
| 773 | 0 | |d American Mathematical Society, 2016 |g v. 144 |h pp. 1509-1521 |k n. 4 |p Proc. Am. Math. Soc. |x 00029939 |w (AR-BaUEN)CENRE-347 |t Proceedings of the American Mathematical Society | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955475494&doi=10.1090%2fproc%2f12841&partnerID=40&md5=792515ae01291593d460b3076266abaa |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1090/proc/12841 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1509_Becher |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1509_Becher |y Registro en la Biblioteca Digital |
| 961 | |a paper_00029939_v144_n4_p1509_Becher |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 85451 | ||