The irrationality exponents of computable numbers

We establish that there exist computable real numbers whose irrationality exponent is not computable. © 2015 American Mathematical Society.

Guardado en:
Detalles Bibliográficos
Autor principal: Becher, V.
Otros Autores: Bugeaud, Y., Slaman, T.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Mathematical Society 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03473caa a22004577a 4500
001 PAPER-24498
003 AR-BaUEN
005 20230518205621.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84955475494 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Becher, V. 
245 1 4 |a The irrationality exponents of computable numbers 
260 |b American Mathematical Society  |c 2016 
506 |2 openaire  |e Política editorial 
504 |a Besicovitch, A.S., Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers (1934) J. London Math. Soc, 2, p. 126. , MR1574327 
504 |a Bugeaud, Y., Diophantine approximation and Cantor sets (2008) Math. Ann, 341 (3), pp. 677-684. , MR2399165 (2009h:11116) 
504 |a Falconer, K., (2003) Fractal Geometry, , 2nd ed., Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, NJ, MR2118797 (2006b:28001) 
504 |a Jarník, V., (1928) Prace Mat.-Fiz, 36, pp. 91-106. , Zur metrischen theorie der diophantischen approximation, 1929 
504 |a Vojtˇech, J., Uber die simultanen diophantischen Approximationen (German) (1931) Math. Z, 33 (1), pp. 505-543. , MR1545226 
504 |a Wolfgang, M., Schmidt, Diophantine approximation (1980) Lecture Notes in Mathematics, 785. , Springer, Berlin, MR568710 (81j:10038) 
504 |a Shallit, J.O., Simple continued fractions for some irrational numbers. II (1982) J. Number Theory, 14 (2), pp. 228-231. , MR655726 (84a:10035) 
504 |a Soare, R.I., Recursive theory and Dedekind cuts (1969) Trans. Amer. Math. Soc., 140, pp. 271-294. , MR0242667 (39 #3997) 
504 |a Robert, I., (1987) Soare, Recursively Enumerable Sets and Degrees, a Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic, , Springer-Verlag, Berlin, MR882921 (88m:03003) 
520 3 |a We establish that there exist computable real numbers whose irrationality exponent is not computable. © 2015 American Mathematical Society.  |l eng 
593 |a Departamento de Computacion, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina 
593 |a UFR de Mathématique et d’Informatique, Université de Strasbourg, 7 rue René Descartes, Strasbourg Cedex, 67084, France 
593 |a Department of Mathematics, University of California Berkeley, 970 Evans Hall, Berkeley, CA 94720, United States 
690 1 0 |a CANTOR SET 
690 1 0 |a COMPUTABILITY 
690 1 0 |a IRRATIONALITY EXPONENT 
700 1 |a Bugeaud, Y. 
700 1 |a Slaman, T.A. 
773 0 |d American Mathematical Society, 2016  |g v. 144  |h pp. 1509-1521  |k n. 4  |p Proc. Am. Math. Soc.  |x 00029939  |w (AR-BaUEN)CENRE-347  |t Proceedings of the American Mathematical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955475494&doi=10.1090%2fproc%2f12841&partnerID=40&md5=792515ae01291593d460b3076266abaa  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1090/proc/12841  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1509_Becher  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v144_n4_p1509_Becher  |y Registro en la Biblioteca Digital 
961 |a paper_00029939_v144_n4_p1509_Becher  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85451