L-Band Radar Soil Moisture Retrieval Without Ancillary Information

A radar-only retrieval algorithm for soil moisture mapping is applied to L-band scatterometer measurements from the Aquarius. The algorithm is based on a nonlinear relation between L-band backscatter and volumetric soil moisture and does not require ancillary information on the surface, e.g., land c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bruscantini, C.A
Otros Autores: Konings, A.G, Narvekar, P.S, McColl, K.A, Entekhabi, D., Grings, Francisco Matías, Karszenbaum, H.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Institute of Electrical and Electronics Engineers 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11785caa a22012017a 4500
001 PAPER-24595
003 AR-BaUEN
005 20250428091116.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84947982795 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bruscantini, C.A. 
245 1 0 |a L-Band Radar Soil Moisture Retrieval Without Ancillary Information 
260 |b Institute of Electrical and Electronics Engineers  |c 2015 
504 |a Narvekar, P., Entekhabi, D., Kim, S., Njoku, E., Soil moisture retrieval using L-band radar observations (2015) IEEE Trans. Geosci. Remote Sens., 53 (6), pp. 3492-3506. , Jun 
504 |a Kornelsen, K.C., Coulibaly, P., Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications (2013) J. Hydrol., 476, pp. 460-489 
504 |a Kim, S.-B., Tsang, L., Johnson, J.T., Huang, S., Van Zyl, J.J., Njoku, E.G., Soil moisture retrieval using time-series radar observations over bare surfaces (2012) IEEE Trans. Geosci. Remote Sens., 50 (5), pp. 1853-1863. , May 
504 |a Zhou, L., Tsang, L., Jandhyala, V., Li, Q., Chan, C.H., Emissivity simulations in passive microwave remote sensing with 3-D numerical solutions of maxwell equations (2004) IEEE Trans. Geosci. Remote Sens., 42 (8), pp. 1739-1748. , Aug 
504 |a Rahmoune, R., Ferrazzoli, P., Kerr, Y.H., Richaume, P., SMOS level 2 retrieval algorithm over forests: Description and generation of global maps (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 6 (3), pp. 1430-1439. , Jun 
504 |a Wickel, J., Jackson, T.J., Woo, A.E.F., Multitemporal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plains hydrology experiment (2001) Int. J. Remote Sens., 22 (8), pp. 1571-1583. , May 
504 |a Holah, N., Baghdadi, N., Zribi, M., Bruand, A., King, C., Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields (2005) Remote Sens. Environ., 96 (1), pp. 78-86 
504 |a Oh, Y., Sarabandi, K., Ulaby, F.T., An empirical model and an inversion technique for radar scattering from bare soil surfaces (1992) IEEE Trans. Geosci. Remote Sens., 30 (2), pp. 370-381. , Mar 
504 |a Dubois, P.C., Van Zyl, J., Engman, T., Measuring soil moisture with imaging radars (1995) IEEE Trans. Geosci. Remote Sens., 33 (4), pp. 915-926. , Jul 
504 |a Shi, J., Wang, J., Hsu, A.Y., O'Neill, P.E., Engman, E.T., Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data (1997) IEEE Trans. Geosci. Remote Sens., 35 (5), pp. 1254-1266. , Sep 
504 |a Santi, E., Paloscia, S., Pettinato, S., Fontanelli, G., A prototype ann based algorithm for the soil moisture retrieval from L-band in view of the incoming SMAP mission (2014) Proc. 13th Spec. Meeting Microw. Radiom. Remote Sens. Environ. (MicroRad), pp. 5-9. , Mar 
504 |a Kim, Y., Van Zyl, J.J., A time-series approach to estimate soil moisture using polarimetric radar data (2009) IEEE Trans. Geosci. Remote Sens., 47 (8), pp. 2519-2527. , Aug 
504 |a Arii, M., Van Zyl, J.J., Kim, Y., A general characterization for polarimetric scattering from vegetation canopies (2010) IEEE Trans. Geosci. Remote Sens., 48 (9), pp. 3349-3357. , Sep 
504 |a Yueh, S., Dinardo, S., Chan, S., Njoku, E., Jackson, T., Bindlish, R., Passive and active L-band system and observations during the 2007CLASIC campaign (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2, pp. 241-244. , Jul 
504 |a McColl, K.A., Entekhabi, D., Piles, M., Uncertainty analysis of soil moisture and vegetation indices using aquarius scatterometer observations (2014) IEEE Trans. Geoscience Remote Sens., 52 (7), pp. 4259-4272. , Jul 
504 |a Huang, S., Tsang, L., Njoku, E.G., Chan, K.S., Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of maxwell equations in three-dimensional simulations (2010) IEEE Trans. Geosci. Remote Sens., 48 (6), pp. 2557-2568. , Jun 
504 |a Ulaby, F.T., Moore, R.K., Fung, A.K., (1986) Microwave Remote Sensing: Active and Passive, 3. , Reading, MA, USA: Addison-Wesley 
504 |a Du, Y., Ulaby, F.T., Dobson, M.C., Sensitivity to soil moisture by active and passive microwave sensors (2000) IEEE Trans. Geosci. Remote Sens., 38 (1), pp. 105-114. , Jan 
504 |a Oh, Y., Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces (2004) IEEE Trans. Geosci. Remote Sens., 42 (3), pp. 596-601. , Mar 
504 |a Wang, J.R., Engman, E.T., Mo, T., Schmugge, T.J., Shiue, J.C., The effects of soil moisture, surface roughness, and vegetation on Lband emission and backscatter (1987) IEEE Trans. Geosci. Remote Sens., GE-25 (6), pp. 825-833. , Nov 
504 |a Ulaby, F.T., Batlivala, P.P., Optimum radar parameters for mapping soil moisture (1976) IEEE Trans. Geosci. Electron., 14 (2), pp. 81-93. , Apr 
504 |a Bindlish, R., Jackson, T., (2013) Aquarius l2 Swath Single Orbit Soil Moisture. Version 2, , NASA DAAC at the National Snow and Ice Data Center, Boulder, CO, USA 
504 |a Reichle, R., (2014) The SMAP Nature v03 Data Product, , personal communication 
504 |a Reichle, R.H., Assessment and enhancement of MERRA land surface hydrology estimates (2011) J. Clim., 24 (24), pp. 6322-6338 
504 |a Reichle, R.H., (2014) Observation-corrected Precipitation Estimates in GEOS-5, 35. , Goddard Space Flight Center, NASA, Greenbelt, MD, USA, Tech. Rep. TM-2014-104606 
504 |a De Lannoy, G.J.M., Koster, R.D., Reichle, R.H., Mahanama, S.P.P., Liu, Q., An updated treatment of soil texture and associated hydraulic properties in a global land modeling system (2014) J. Adv. Model. Earth Syst., 6, pp. 957-979 
504 |a Stoffelen, A., Toward the true near-surface wind speed: Error modeling and calibration using triple collocation (1998) J. Geophys. Res. Oceans, 103 (C4), pp. 7755-7766 
504 |a McColl, K.A., Vogelzang, J., Konings, A.G., Entekhabi, D., Piles, M., Stoffelen, A., Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target (2014) Geophys. Res. Lett., 41, pp. 6229-6236 
504 |a Davidson, M., Toan, T.L., Mattia, F., Satalino, G., Manninen, T., Borgeaud, M., On the characterization of agricultural soil roughness for radar remote sensing studies (2000) IEEE Trans. Geosci. Remote Sens., 38 (2), pp. 630-640. , Mar 
504 |a Jackson, T.J., Kostov, K.G., Saatchi, S.S., Rock fraction effects on the interpretation of microwave emission from soils (1992) IEEE Trans. Geosci. Remote Sens., 30 (3), pp. 610-616. , May 
504 |a Miralles, D.G., Crow, W.T., Cosh, M.H., Estimating spatial sampling errors in coarse-scale soil moisture estimates derived from point-scale observations (2010) J. Hydrometeorol., 11 (6), pp. 1423-1429 
504 |a Wagner, W., Lemoine, G., Borgeaud, M., Rott, H., A study of vegetation cover effects on ERS scatterometer data (1999) IEEE Trans. Geosci. Remote Sens., 37 (2), pp. 938-948. , Mar 
506 |2 openaire  |e Política editorial 
520 3 |a A radar-only retrieval algorithm for soil moisture mapping is applied to L-band scatterometer measurements from the Aquarius. The algorithm is based on a nonlinear relation between L-band backscatter and volumetric soil moisture and does not require ancillary information on the surface, e.g., land classification, vegetation canopy, surface roughness, etc. It is based on the definition of three limiting cases or end-members: 1) smooth bare soil; 2) rough bare soil; and 3) maximum vegetation condition. In this study, an estimation method is proposed for the end-member parameters that is iterative and only uses space-borne measurements. The major advantages of the algorithm include an analytic formulation (direct inversion possible), and the fact that there is no requirement for ancillary information. Ancillary data often misclassify the surface and the parameterizations linking surface classification to model parameter values are often highly uncertain. The retrieval algorithm is tested using 3 years of space-borne scatterometer observations from the Aquarius/SAC-D. Retrieved soil moisture accuracy is assessed in several ways: comparison of global spatial patterns with other available soil moisture products (two reanalysis modeling products and retrievals based on the Aquarius radiometer), extended triple collocation (ETC) and time series analysis over selected target areas. In general, low bias and standard deviation are observed with levels comparable to independent radiometer-based retrievals. The errors, however, increase across areas with high vegetation density. The results are promising and applicable to forthcoming L-band radar missions such as SMAP-NASA (2015) and SAOCOM-CONAE (2016). © 2015 IEEE.  |l eng 
593 |a Department of Remote Sensing, Institute of Astronomy and Space Physics (IAFE), Ciudad de Buenos Aires, 1428, Argentina 
593 |a Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02143, United States 
650 1 7 |2 spines  |a RADAR 
650 1 7 |2 spines  |a RADAR 
650 1 7 |2 spines  |a RADAR 
690 1 0 |a AQUARIUS/SAC-D 
690 1 0 |a MICROWAVE REMOTE SENSING 
690 1 0 |a RADAR ROUGHNESS 
690 1 0 |a RADAR VEGETATION INDEX (RVI) 
690 1 0 |a SCATTEROMETER 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a ALGORITHMS 
690 1 0 |a CLASSIFICATION (OF INFORMATION) 
690 1 0 |a ITERATIVE METHODS 
690 1 0 |a METEOROLOGICAL INSTRUMENTS 
690 1 0 |a MOISTURE 
690 1 0 |a NASA 
690 1 0 |a RADAR MEASUREMENT 
690 1 0 |a RADIOMETERS 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a SOILS 
690 1 0 |a SPACE-BASED RADAR 
690 1 0 |a SURFACE ROUGHNESS 
690 1 0 |a TIME SERIES ANALYSIS 
690 1 0 |a UNCERTAINTY ANALYSIS 
690 1 0 |a VEGETATION 
690 1 0 |a NONLINEAR RELATIONS 
690 1 0 |a RETRIEVAL ALGORITHMS 
690 1 0 |a SCATTEROMETER MEASUREMENTS 
690 1 0 |a SOIL MOISTURE MAPPING 
690 1 0 |a SOIL MOISTURE RETRIEVALS 
690 1 0 |a SURFACE CLASSIFICATION 
690 1 0 |a VEGETATION CONDITION 
690 1 0 |a VOLUMETRIC SOIL MOISTURES 
690 1 0 |a SOIL SURVEYS 
690 1 0 |a ALGORITHM 
690 1 0 |a AQUARIUS 
690 1 0 |a MICROWAVE IMAGERY 
690 1 0 |a REMOTE SENSING 
690 1 0 |a SATELLITE DATA 
690 1 0 |a SOIL MOISTURE 
700 1 |a Konings, A.G. 
700 1 |a Narvekar, P.S. 
700 1 |a McColl, K.A. 
700 1 |a Entekhabi, D. 
700 1 |a Grings, Francisco Matías 
700 1 |a Karszenbaum, H. 
773 0 |d Institute of Electrical and Electronics Engineers, 2015  |g v. 8  |h pp. 5526-5540  |k n. 12  |p IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.  |x 19391404  |t IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947982795&doi=10.1109%2fJSTARS.2015.2496326&partnerID=40&md5=22de84a1139e8ee25cf6320efe9d1ed2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/JSTARS.2015.2496326  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19391404_v8_n12_p5526_Bruscantini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19391404_v8_n12_p5526_Bruscantini  |y Registro en la Biblioteca Digital 
961 |a paper_19391404_v8_n12_p5526_Bruscantini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85548