Rhodnius prolixus smells repellents: Behavioural evidence and test of present and potential compounds inducing repellency in Chagas disease vectors

Insect repellents are known since many decades ago and constitute a major tool for personal protection against the biting of mosquitoes. Despite their wide use, the understanding of why and how repellents repel is relatively recent. In particular, the question about to what extent insects other than...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zermoglio, P.F
Otros Autores: Martin-Herrou, H., Bignon, Y., Lazzari, C.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10990caa a22012737a 4500
001 PAPER-24633
003 AR-BaUEN
005 20230518205631.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84938067117 
024 7 |2 cas  |a diethyltoluamide, 134-62-3, 26545-51-7; icaridin, 119515-38-7; piperidine, 110-89-4, 6091-44-7; DEET; Insect Repellents; picaridin; piperidine; Piperidines 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JIPHA 
100 1 |a Zermoglio, P.F. 
245 1 0 |a Rhodnius prolixus smells repellents: Behavioural evidence and test of present and potential compounds inducing repellency in Chagas disease vectors 
260 |b Elsevier Ltd  |c 2015 
270 1 0 |m Lazzari, C.R.; Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Univ. François Rabelais, Faculté des Sciences et Techniques, Parc Grandmont, France 
506 |2 openaire  |e Política editorial 
504 |a Afify, A., Horlacher, B., Roller, J., Galizia, C.G., Different repellents for Aedes aegypti against blood-feeding and oviposition (2014) PLoS ONE, 9 (7), p. e103765 
504 |a Alzogaray, R.A., Fontán, A., Zerba, E.N., Repellency of DEET to nymphs of Triatoma infestans (2000) Med. Vet. Entomol., 14, pp. 6-10 
504 |a Barrozo, R.B., Lazzari, C.R., The response of the blood-sucking bug Triatoma infestans to carbon dioxide and other host odours (2004) Chem. Senses, 29, pp. 319-329 
504 |a Barton-Browne, L., Host-related responses and their suppression: some behavioral considerations (1977) Chemical Control of Insect Behavior: Theory and Application, pp. 117-127. , Wiley, New York, NY, H.H. Shorey, J.J. McKelvey (Eds.) 
504 |a Bohbot, J.D., Dickens, J.C., Insect repellents: modulators of mosquito odorant receptor activity (2010) PLoS ONE, 5 (8), p. e12138 
504 |a Corbel, V., Stankiewicz, M., Pennetier, C., Fournier, D., Stojan, J., Girard, E., Dimitrov, M., Lapied, B., Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet (2009) BMC Biol., 7, p. 47 
504 |a Debboun, M., Frances, S.P., Strickman, D.A., (2015) Insect Repellents Handbook, , CRC Press, Boca Raton, London, New York, xvi+382pp 
504 |a Dethier, V.G., (1947) Chemical Insect Attractants and Repellents, , Blakiston Press, Philadelphia 
504 |a Dethier, V.G., Barton-Browne, L., Smith, C.N., The designation of chemicals in terms of the responses they elicit from insects (1960) J. Econ. Entomol., 53 (1), pp. 134-136 
504 |a Ditzen, M., Pellegrino, M., Vosshall, L.B., Insect odorant receptors are molecular targets of the insect repellent DEET (2008) Science, 319, pp. 1838-1842 
504 |a Fresquet, N., Lazzari, C.R., Response to heat in Rhodnius prolixus: the role of the thermal background (2011) J. Insect Physiol., 57, pp. 1446-1449 
504 |a Flores, G.B., Lazzari, C.R., The role of the antennae in Triatoma infestans: orientation towards thermal sources (1996) J. Insect Physiol., 42, pp. 433-440 
504 |a Guerenstein, P.G., Lorenzo, M.G., Núñez, J.A., Lazzari, C.R., Baker's yeast: an attractant for baiting traps for Chagas' disease vectors (1995) Experientia, 51, pp. 834-837 
504 |a Kain, P., Boyle, S.M., Tharadra, S.K., Guda, T., Pham, C., Dahanukar, A., Ray, A., Odour receptors and neurons for DEET and new insect repellents (2013) Nature, 502 (7472), pp. 507-512 
504 |a Katz, T.M., Miller, J.H., Herbert, A.A., Insect repellents: historical perspectives and new developments (2008) J. Am. Acad. Dermatol., 58 (5), pp. 865-871 
504 |a Lazzari, C.R., Orientation towards hosts in haematophagous insects: an integrative perspective (2009) Adv. Insect Physiol., 37, pp. 1-58 
504 |a Leal, W., The enigmatic reception of DEET - the gold standard of insect repellents (2014) Curr. Opin. Insect Sci., 6, pp. 93-98 
504 |a Lorenzo, M.G., Manrique, G., Pires, H.H.R., de Brito Sánchez, M.G., Diotaiuti, L., Lazzari, C.R., Yeast culture volatiles as attractants for Rhodnius prolixus: electroantennogram responses and captures in yeast-baited traps (1999) Acta Trop., 72, pp. 119-124 
504 |a McIver, S.B., A model for the mechanisms of action of the repellent DEET on Aedes aegipty (1981) J. Med. Entomol., 18, pp. 357-361 
504 |a Obermayr, U., Excitorepellency (2015) Insect Repellents Handbook, pp. 91-115. , CRC Press, Boca Raton, London, New York 
504 |a Ohio bed bug Workgroup: Final report and recommendations to the Governor and Ohio General Assembly (2011), p. 34. , https://aging.ohio.gov/resources/publications/bedbugs-report2011.pdf; Pickett, J.A., Birkett, M.A., Logan, J.G., DEET repels ORNery mosquitoes (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 13195-13196 
504 |a Sfara, V., Zerba, E.N., Alzogaray, R.A., Decrease in DEET repellency caused by nitric oxide in Rhodnius prolixus (2008) Arch. Insect Biochem. Physiol., 67 (1), pp. 1-8 
504 |a Sfara, V., Mougabure-Cueto, G.A., Zerba, E.N., Alzogaray, R.A., Adaptation of the repellency response to DEET in Rhodnius prolixus (2011) J. Insect Physiol., 57, pp. 1431-1436 
504 |a Syed, Z., Leal, W.S., Mosquitoes smell and avoid the insect repellent DEET (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 13598-13603 
504 |a Usinger, R., Monograph of cimicidae (1966) The Thomas Say Foundation, 7. , Entomological Society of America, College Park, MD, Xi+572 
504 |a Vinauger, C., Buratti, L., Lazzari, C.R., Learning the way to blood: first evidence of dual olfactory conditioning in a bloodsucking insect Rhodnius prolixus. I. Appetitive learning (2011) J. Exp. Biol., 214, pp. 3032-3038 
504 |a Vinauger, C., Buratti, L., Lazzari, C.R., Learning the way to blood: first evidence of dual olfactory conditioning in a bloodsucking insect Rhodnius prolixus. II. Aversive learning (2011) J. Exp. Biol., 214, pp. 3039-3045 
504 |a Vinauger, C., Lallement, H., Lazzari, C.R., Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response (PER) (2013) J. Exp. Biol., 216, pp. 892-900 
504 |a Wang, C., Lü, L., Zhang, A., Liu, C., Repellency of selected chemicals against the bed bug (Hemiptera: Cimicidae) (2013) J. Econ. Entomol., 106 (6), pp. 2522-2529 
504 |a White, G.B., Moore, S.J., Terminology of insect repellents (2015) Insect Repellents Handbook, pp. 3-30. , CRC Press, Boca Raton, London, New York 
504 |a Xu, P., Choo, Y.M., De La Rosa, A., Leal, W.S., Mosquito odorant receptor for DEET and methyl jasmonate (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 16592-16597 
520 3 |a Insect repellents are known since many decades ago and constitute a major tool for personal protection against the biting of mosquitoes. Despite their wide use, the understanding of why and how repellents repel is relatively recent. In particular, the question about to what extent insects other than mosquitoes are repulsed by repellents remains open. We developed a series of bioassays aimed to test the performance of well established as well as potential repellent molecules on the Chagas disease vector Rhodnius prolixus. Besides testing their ability to prevent biting, we tested the way in which they act, i.e., by obstructing the detection of attractive odours or by themselves. By using three different experimental protocols (host-biting, open-loop orientation to odours and heat-triggered proboscis extension response) we show that DEET repels bugs both in the presence and in the absence of host-associated odours but only at the highest quantities tested. Piperidine was effective with or without a host and icaridine only repelled in the absence of a living host. Three other molecules recently proposed as potential repellents due to their affinity to the Ir40a+ receptor (which is also activated by DEET) did not evoke significant repellency. Our work provides novel experimental tools and sheds light on the mechanism behind repellency in haematophagous bugs. © 2015 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Centre National de la Recherche Scientifique 
536 |a Detalles de la financiación: Authors are indebted to C. Labrousse for rearing the insects. This work received support from the CNRS and the University of Tours (France) and Marie Curie Actions IRSES N° 319015 (IBIAL FP7 European Union). 
593 |a Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261 - Université François Rabelais, Tours, France 
593 |a Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Univ. Buenos Aires, Argentina 
593 |a Direction des Affaires Sanitaires et Sociales de Nouvelle Calédonie, Nouméa, New Caledonia 
593 |a Centre de Recherche des Cordeliers UPMC-INSERM-CNRS, Paris, France 
690 1 0 |a DEET 
690 1 0 |a ICARIDINE 
690 1 0 |a IR40A+ 
690 1 0 |a TRIATOMINES 
690 1 0 |a VECTOR INSECTS 
690 1 0 |a DISEASE VECTOR 
690 1 0 |a HEMATOLOGY 
690 1 0 |a INFECTIOUS DISEASE 
690 1 0 |a INSECT 
690 1 0 |a PROTOZOAN 
690 1 0 |a REPELLENT 
690 1 0 |a HEXAPODA 
690 1 0 |a RHODNIUS PROLIXUS 
690 1 0 |a DIETHYLTOLUAMIDE 
690 1 0 |a ICARIDIN 
690 1 0 |a INSECT REPELLENT 
690 1 0 |a PIPERIDINE 
690 1 0 |a PIPERIDINE DERIVATIVE 
690 1 0 |a ANIMAL 
690 1 0 |a ANIMAL BEHAVIOR 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a DISEASE CARRIER 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a HUMAN 
690 1 0 |a NYMPH 
690 1 0 |a ODOR 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a RHODNIUS 
690 1 0 |a ANIMALS 
690 1 0 |a BEHAVIOR, ANIMAL 
690 1 0 |a CHAGAS DISEASE 
690 1 0 |a DEET 
690 1 0 |a DISEASE VECTORS 
690 1 0 |a FEEDING BEHAVIOR 
690 1 0 |a HUMANS 
690 1 0 |a INSECT REPELLENTS 
690 1 0 |a NYMPH 
690 1 0 |a ODORS 
690 1 0 |a PIPERIDINES 
690 1 0 |a RHODNIUS 
690 1 0 |a SMELL 
700 1 |a Martin-Herrou, H. 
700 1 |a Bignon, Y. 
700 1 |a Lazzari, C.R. 
773 0 |d Elsevier Ltd, 2015  |g v. 81  |h pp. 137-144  |p J. Insect Physiol.  |x 00221910  |w (AR-BaUEN)CENRE-668  |t Journal of Insect Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938067117&doi=10.1016%2fj.jinsphys.2015.07.012&partnerID=40&md5=176df131360ec6a14c1cd8ef884c5665  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jinsphys.2015.07.012  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00221910_v81_n_p137_Zermoglio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v81_n_p137_Zermoglio  |y Registro en la Biblioteca Digital 
961 |a paper_00221910_v81_n_p137_Zermoglio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85586