Titan's interaction with the supersonic solar wind

After 9 years in the Saturn system, the Cassini spacecraft finally observed Titan in the supersonic and super-Alfvénic solar wind. These unique observations reveal that Titan's interaction with the solar wind is in many ways similar to unmagnetized planets Mars and Venus and active comets in sp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bertucci, César Luis Fermín
Otros Autores: Hamilton, D.C, Kurth, W.S, Hospodarsky, G., Mitchell, D., Sergis, N., Edberg, N.J.T, Dougherty, M.K
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2015
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11335caa a22012257a 4500
001 PAPER-24750
003 AR-BaUEN
005 20241009100249.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84923329837 
030 |a GPRLA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bertucci, César Luis Fermín 
245 1 0 |a Titan's interaction with the supersonic solar wind 
260 |b Blackwell Publishing Ltd  |c 2015 
270 1 0 |m Bertucci, C.; Instituto de Astronomía y Física Del Espacio (CONICET/UBA), Ciudad UniversitariaArgentina 
504 |a gren, K., Wahlund, J.-E., Garnier, P., Modolo, R., Cui, J., Galand, M., Müller-Wodarg, I., On the ionospheric structure of Titan (2009) Planet. Space Sci., 57 (1415), pp. 1821-1827 
504 |a Arridge, C.S., Upstream of Saturn and Titan (2011) Space Sci. Rev., 162 (14), pp. 25-83 
504 |a Bertucci, C., Mazelle, C., Acuña, M., Structure and variability of the Martian magnetic pileup boundary and bow shock from MGS MAG/ER observations (2005) Adv. Space Res., 36 (11), pp. 2066-2076 
504 |a Bertucci, C., Mazelle, C., Acuña, M.H., Russell, C.T., Slavin, J.A., Structure of the magnetic pileup boundary at Mars and Venus (2005) J. Geophys. Res., 110, p. A01209 
504 |a Bertucci, C., The magnetic memory of Titan's ionized atmosphere (2008) Science, 321 (5895), pp. 1475-1478 
504 |a Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., Vaisberg, O., The induced magnetospheres of Mars, Venus, and Titan (2011) Space Sci. Rev., 162 (14), pp. 113-171 
504 |a Coates, A.J., Cassini in Titan's tail: CAPS observations of plasma escape (2012) J. Geophys. Res., 117. , et al., A05324 
504 |a Cravens, T.E., Dynamical and magnetic field time constants for Titan's ionosphere: Empirical estimates and comparisons with Venus (2010) J. Geophys. Res., 115. , et al., A08319 
504 |a Cui, J., Yelle, R.V., Volk, K., Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere (2008) J. Geophys. Res., 113, p. E10004 
504 |a Delamere, P.A., Bagenal, F., Pluto's kinetic interaction with the solar wind (2004) Geophys. Res. Lett., 31, p. L04807 
504 |a Dougherty, M., The Cassini magnetic field investigation (2004) Space Sci. Rev., 114 (1-4), pp. 331-383 
504 |a Dubinin, E., Fränz, M., Woch, J., Roussos, E., Barabash, S., Lundin, R., Winningham, J.D., Acuña, M., Plasma morphology at Mars. Aspera-3 observations (2006) Space Sci. Rev., 126 (14), pp. 209-238 
504 |a Dubinin, E., Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations (2008) J. Geophys. Res., 113. , et al., A10217 
504 |a Edberg, N.J.T., Lester, M., Cowley, S.W.H., Eriksson, A.I., Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields (2008) J. Geophys. Res., 113, p. A08206 
504 |a Edberg, N.J.T., Wahlund, J.-E., gren, K., Morooka, M.W., Modolo, R., Bertucci, C., Dougherty, M.K., Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape (2010) Geophys. Res. Lett., 37, p. L20105 
504 |a Garnier, P., Dandouras, I., Toublanc, D., Brandt, P.C., Roelof, E.C., Mitchell, D.G., Krimigis, S.M., Waite, H., The exosphere of Titan and its interaction with the kronian magnetosphere: MIMI observations and modeling (2007) Planet. Space Sci., 55 (12), pp. 165-173 
504 |a Gurnett, D., The Cassini radio and plasma wave investigation (2004) Space Sci. Rev., 114 (1), pp. 395-463 
504 |a Hartle, R.E., Sittler, E.C., Jr., Ogilvie, K.W., Scudder, J.D., Lazarus, A.J., Atreya, S.K., Titan's ion exosphere observed from Voyager 1 (1982) J. Geophys. Res., 87, pp. 1383-1394 
504 |a Krimigis, S., Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan (2004) Space, Sci. Rev., 114, pp. 233-329 
504 |a Masters, A., Achilleos, N., Dougherty, M.K., Slavin, J.A., Hospodarsky, G.B., Arridge, C.S., Coates, A.J., An empirical model of Saturn's bow shock: Cassini observations of shock location and shape (2008) J. Geophys. Res., 113, p. A10210 
504 |a Melin, H., Shemansky, D.E., Liu, X., The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn (2009) Planet. Space Sci., 57, pp. 1743-1753 
504 |a Ness, N.F., Acuña, M.H., Behannon, K.W., Neubauer, F.M., The induced magnetosphere of Titan (1982) J. Geophys. Res., 87, pp. 1369-1381 
504 |a Neubauer, F.M., Giotto magnetic-field results on the boundaries of the pile-up region and the magnetic cavity (1987) Astron. Astrophys., 187, pp. 73-79 
504 |a Neubauer, F.M., First results from the Giotto magnetometer experiment at comet Halley (1986) Nature, 321, pp. 352-355 
504 |a Neubauer, F.M., Titan's near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3 (2006) J. Geophys. Res., 111. , et al., A10220 
504 |a Omidi, N., Winske, D., A kinetic study of solar wind mass loading and cometary bow shocks (1987) J. Geophys. Res., 92, p. 13 
504 |a Romanelli, N., Outflow and plasma acceleration in Titan's induced magnetotail: Evidence of magnetic tension forces (2014) J. Geophys. Res. Space Physics, 119. , in press 
504 |a Schwartz, S.J., Shock and discontinuity normals, Mach numbers, and related parameters (1998) Analysis Methods for Multi-Spacecraft Data, 1, pp. 249-267. , ISSI Scientific Rep. Ser. edited by G. Paschmann and P. Daly, ESA/ISSI, Noordwijk, Netherlands 
504 |a Schwartz, S.J., Burgess, D., Wilkinson, W.P., Kessel, R.L., Dunlop, M., Lühr, H., Observations of short large-amplitude magnetic structures at a quasi-parallel shock (1992) J. Geophys. Res., 97, pp. 4209-4227 
504 |a Smith, E.J., Tsurutani, B.T., Slvain, J.A., Jones, D.E., Siscoe, G.L., Asoka Mendis, D., International cometary explorer encounter with Giacobini-Zinner: Magnetic field observations (1986) Science, 232 (4748), pp. 382-385 
504 |a Sonnerup, B.U.O., Scheible, M., Minimum and maximum variance analysis (1998) Analysis Methods for Multi-Spacecraft Data, 1, pp. 185-215. , ISSI Scientific Rep. Ser. edited by G. Paschmann and P. Daly, ESA/ISSI, Noordwijk, Netherlands 
504 |a Thomsen, M.F., Saturn's magnetospheric dynamics (2013) Geophys. Res. Lett., 40, pp. 5337-5344 
504 |a Treumann, R.A., Fundamentals of collisionless shocks for astrophysical application: 1. Non-relativistic shocks (2009) Astron. Astrophys. Rev., 17 (4), pp. 409-535 
504 |a Tsurutani, B.T., Smith, E.J., Thorne, R.M., Gosling, J.T., Matsumoto, H., Steepened magnetosonic waves at comet Giacobini-Zinner (1987) J. Geophys. Res., 92, p. 11 
504 |a Ulusen, D., Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model: Evidence for organized behavior at high altitudes (2012) Icarus, 217 (1), pp. 43-54 
504 |a Wei, H.Y., Russell, C.T., Dougherty, M.K., Neubauer, F.M., Ma, Y.J., Upper limits on Titan's magnetic moment and implications for its interior (2010) J. Geophys. Res., 115, p. E10007 
504 |a Zhang, T.L., Luhmann, J., Russell, C., The magnetic barrier at Venus (1991) J. Geophys. Res., 96, p. 11 
504 |a Zhang, T.L., Initial Venus express magnetic field observations of the Venus bow shock location at solar minimum (2008) Planet. Space Sci., 56 (6), pp. 785-789 
506 |2 openaire  |e Política editorial 
520 3 |a After 9 years in the Saturn system, the Cassini spacecraft finally observed Titan in the supersonic and super-Alfvénic solar wind. These unique observations reveal that Titan's interaction with the solar wind is in many ways similar to unmagnetized planets Mars and Venus and active comets in spite of the differences in the properties of the solar plasma in the outer solar system. In particular, Cassini detected a collisionless, supercritical bow shock and a well-defined induced magnetosphere filled with mass-loaded interplanetary magnetic field lines, which drape around Titan's ionosphere. Although the flyby altitude may not allow the detection of an ionopause, Cassini reports enhancements of plasma density compatible with plasma clouds or streamers in the flanks of its induced magnetosphere or due to an expansion of the induced magnetosphere. Because of the upstream conditions, these observations may be also relevant to other bodies in the outer solar system such as Pluto, where kinetic processes are expected to dominate. © 2015. American Geophysical Union. All Rights Reserved.  |l eng 
536 |a Detalles de la financiación: Science and Technology Facilities Council, STFC, ST/K001051/1 
593 |a Instituto de Astronomía y Física Del Espacio (CONICET/UBA), Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Physics Department, University of Maryland, College Park, MD, United States 
593 |a Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States 
593 |a Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD, United States 
593 |a Office for Space Research, Academy of Athens, Athens, Greece 
593 |a Swedish Institute of Space Physics, Uppsala, Sweden 
593 |a Blackett Laboratory, Imperial College London, London, United Kingdom 
650 1 7 |2 spines  |a VENUS 
650 1 7 |2 spines  |a VENUS 
690 1 0 |a MARS 
690 1 0 |a SOLAR WIND 
690 1 0 |a TITAN 
690 1 0 |a INTERPLANETARY FLIGHT 
690 1 0 |a IONOSPHERE 
690 1 0 |a MAGNETOSPHERE 
690 1 0 |a PLANETS 
690 1 0 |a PLASMA DENSITY 
690 1 0 |a SOLAR WIND 
690 1 0 |a CASSINI SPACECRAFT 
690 1 0 |a INDUCED MAGNETOSPHERES 
690 1 0 |a INTERPLANETARY MAGNETIC FIELDS 
690 1 0 |a MARS 
690 1 0 |a OUTER SOLAR SYSTEM 
690 1 0 |a TITAN 
690 1 0 |a UPSTREAM CONDITIONS 
690 1 0 |a SOLAR SYSTEM 
690 1 0 |a COLLISION 
690 1 0 |a COMET 
690 1 0 |a MAGNETIC FIELD 
690 1 0 |a MAGNETOSPHERE 
690 1 0 |a PLANETARY ATMOSPHERE 
690 1 0 |a SATURN 
690 1 0 |a SOLAR WIND 
690 1 0 |a TITAN 
700 1 |a Hamilton, D.C. 
700 1 |a Kurth, W.S. 
700 1 |a Hospodarsky, G. 
700 1 |a Mitchell, D. 
700 1 |a Sergis, N. 
700 1 |a Edberg, N.J.T. 
700 1 |a Dougherty, M.K. 
773 0 |d Blackwell Publishing Ltd, 2015  |g v. 42  |h pp. 193-200  |k n. 2  |p Geophys. Res. Lett.  |x 00948276  |w (AR-BaUEN)CENRE-822  |t Geophysical Research Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923329837&doi=10.1002%2f2014GL062106&partnerID=40&md5=6790ce1f46e79a083d34649f38c8b6c6  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/2014GL062106  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00948276_v42_n2_p193_Bertucci  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00948276_v42_n2_p193_Bertucci  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00948276_v42_n2_p193_Bertucci  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion