NONLINEAR MEAN-VALUE FORMULAS on FRACTAL SETS
In this paper we study the solutions to nonlinear mean-value formulas on fractal sets. We focus on the mean-value problem 1 2maxq Vm,p{f(q)} + 1 2minq Vm,p{f(q)}-f(p) = 0 in the Sierpiński gasket with prescribed values f(p1), f(p2) and f(p3) at the three vertices of the first triangle. For this prob...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
World Scientific Publishing Co. Pte Ltd
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 07621caa a22007937a 4500 | ||
|---|---|---|---|
| 001 | PAPER-24912 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205651.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85059121555 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Navarro, J.C. | |
| 245 | 1 | 0 | |a NONLINEAR MEAN-VALUE FORMULAS on FRACTAL SETS |
| 260 | |b World Scientific Publishing Co. Pte Ltd |c 2018 | ||
| 270 | 1 | 0 | |m Rossi, J.D.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria-Pabellón iArgentina; email: jrossi@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Manfredi, J.J., Parviainen, M., Rossi, J.D., An asymptotic mean value characterization for pharmonic functions (2010) Proc. Am. Math. Soc., 138, pp. 881-889 | ||
| 504 | |a Hartenstine, D., Rudd, M., Asymptotic statistical characterizations of p-harmonic functions of two variables (2011) Rocky Mt. J. Math., 41 (2), pp. 493-504 | ||
| 504 | |a Hartenstine, D., Rudd, M., Statistical functional equations and p-harmonious functions (2013) Adv. Nonlinear Stud., 13 (1), pp. 191-207 | ||
| 504 | |a Manfredi, J.J., Parviainen, M., Rossi, J.D., On the definition and properties of p-harmonious functions (2012) Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2), pp. 215-241 | ||
| 504 | |a Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145 (1), pp. 91-120 | ||
| 504 | |a Rudd, M., Van Dyke, H.A., Median values, 1-harmonic functions, and functions of least gradient (2013) Commun. Pure Appl. Anal., 12 (2), pp. 711-719 | ||
| 504 | |a Oberman, A., Finite difference methods for the infinity Laplace and p-Laplace equations (2013) J. Comput. Appl. Math., 254, pp. 65-80 | ||
| 504 | |a Oberman, A., A convergent difference scheme for the infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions (2005) Math. Comput., 74 (251), pp. 1217-1230 | ||
| 504 | |a Peres, Y., Schramm, O., Sheffield, S., Wilson, D., Tug-of-war and the infinity Laplacian (2009) J. Am. Math. Soc., 22 (1), pp. 167-210 | ||
| 504 | |a Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B., Tugof-war and the infinity Laplacian (2011) Selected Works of Oded Schramm, Selected Works in Probability and Statisitcs, 1-2, pp. 595-638. , Springer, New York | ||
| 504 | |a Rossi, J.D., Tug-of-war games and PDEs (2011) Proc. R. Soc. Edinb. A, 141 (2), pp. 319-369 | ||
| 504 | |a Alvarez, V., Rodríguez, J.M., Yakubovich, D.V., Estimates for nonlinear harmonic "measures" on trees (2001) Michigan Math. J., 49 (1), pp. 47-64 | ||
| 504 | |a Del Pezzo, L.M., Mosquera, C.A., Rossi, J.D., The unique continuation property for a nonlinear equation on trees (2014) J. Lond. Math. Soc., 89, pp. 364-382 | ||
| 504 | |a Del Pezzo, L.M., Mosquera, C.A., Rossi, J.D., Estimates for nonlinear harmonic measures on trees (2014) Bull. Braz. Math. Soc., 45 (3), pp. 405-432 | ||
| 504 | |a Kaufman, R., Llorente, J.G., Wu, J.-M., Nonlinear harmonic measures on trees (2003) Ann. Acad. Sci. Fenn. Math., 28 (2), pp. 279-302 | ||
| 504 | |a Kaufman, R., Wu, J.-M., Fatou theorem of pharmonic functions on trees (2000) Ann. Probab., 28 (3), pp. 1138-1148 | ||
| 504 | |a Manfredi, J.J., Oberman, A., Sviridov, A., Nonlinear elliptic partial differential equations and pharmonic functions on graphs (2015) Diff. Integral Eqs., 28 (1-2), pp. 79-102 | ||
| 504 | |a Sviridov, A.P., (2011) Elliptic Equations in Graphs Via Stochastic Games, , Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA | ||
| 504 | |a Sviridov, A.P., P-harmonious functions with drift on graphs via games (2011) Electron. J. Diff. Eqs., 2011, pp. 1141-11411 | ||
| 504 | |a Strichartz, R.S., (2006) Differential Equations on Fractals: A Tutorial, , Princeton University Press | ||
| 504 | |a Li, P.-H., Ryder, N., Strichartz, R.S., Ugurcan, B., Extensions and their minimizations on the Sierpiński gasket (2014) Potential Anal., 41 (4), pp. 1167-1201 | ||
| 504 | |a Owen, J., Strichartz, R.S., Boundary value problems for harmonic functions on a domain in the Sierpinski gasket (2012) Indiana Univ. Math. J., 61 (1), pp. 319-335 | ||
| 504 | |a Barlow, M.T., Diffusion on fractals (1998) Lectures on Probability Theory and Statistics, Lectures Notes in Mathematics, 1690, pp. 1-114. , Springer, Berlin | ||
| 504 | |a Qiu, H., Strichartz, R.S., Mean value properties of harmonic functions on Sierpiński gasket type fractals (2013) J. Fourier Anal. Appl., 19 (5), pp. 943-966 | ||
| 504 | |a Camilli, F., Capitanelli, R., Vivaldi, M.A., Absolutely minimizing Lipschitz extensions and infinity harmonic functions on the Sierpiński gasket (2017) Nonlinear Anal., 163, pp. 71-85 | ||
| 504 | |a Camilli, F., Capitanelli, R., Marchi, C., Eikonal equations on the Sierpiński gasket (2016) Math. Ann., 364 (3-4), pp. 1167-1188 | ||
| 504 | |a Kigami, J., (2001) Analysis on Fractals, , Cambridge University Press, Cambridge | ||
| 504 | |a Maitra, A.P., Sudderth, W.D., (1996) Discrete Gambling and Stochastic Games, Stochastic Modelling and Applied Probability, 32. , Springer-Verlag | ||
| 504 | |a Wolff, T.H., Gap series constructions for the p-Laplacian (2007) J. Anal. Math., 102, pp. 371-394 | ||
| 520 | 3 | |a In this paper we study the solutions to nonlinear mean-value formulas on fractal sets. We focus on the mean-value problem 1 2maxq Vm,p{f(q)} + 1 2minq Vm,p{f(q)}-f(p) = 0 in the Sierpiński gasket with prescribed values f(p1), f(p2) and f(p3) at the three vertices of the first triangle. For this problem we show existence and uniqueness of a continuous solution and analyze some properties like the validity of a comparison principle, Lipschitz continuity of solutions (regularity) and continuous dependence of the solution with respect to the prescribed values at the three vertices of the first triangle. © 2018 World Scientific Publishing Company. |l eng | |
| 536 | |a Detalles de la financiación: MTM2010-18128, MTM2011-27998 | ||
| 536 | |a Detalles de la financiación: This work was supported by the MEC Projects MTM2010-18128 and MTM2011-27998 (Spain). | ||
| 593 | |a Departamento de Análisis Matemático, Universidad de Alicante, Apartado de Correos 99, Alicante, E-03080, Spain | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria-Pabellón i, Buenos Aires, C1428EGA, Argentina | ||
| 690 | 1 | 0 | |a FRACTAL SETS |
| 690 | 1 | 0 | |a MEAN-VALUE FORMULAS |
| 690 | 1 | 0 | |a GEOMETRY |
| 690 | 1 | 0 | |a COMPARISON PRINCIPLE |
| 690 | 1 | 0 | |a CONTINUOUS DEPENDENCE |
| 690 | 1 | 0 | |a EXISTENCE AND UNIQUENESS |
| 690 | 1 | 0 | |a FRACTAL SETS |
| 690 | 1 | 0 | |a LIPSCHITZ CONTINUITY |
| 690 | 1 | 0 | |a MEAN VALUES |
| 690 | 1 | 0 | |a FRACTALS |
| 700 | 1 | |a Rossi, J.D. | |
| 773 | 0 | |d World Scientific Publishing Co. Pte Ltd, 2018 |g v. 26 |k n. 6 |p Fractals |x 0218348X |w (AR-BaUEN)CENRE-1709 |t Fractals | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059121555&doi=10.1142%2fS0218348X18500913&partnerID=40&md5=5b48b2b80e475883645a92bcc16ca3bb |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1142/S0218348X18500913 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0218348X_v26_n6_p_Navarro |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0218348X_v26_n6_p_Navarro |y Registro en la Biblioteca Digital |
| 961 | |a paper_0218348X_v26_n6_p_Navarro |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 85865 | ||