Cherry (Prunus avium) phenolic compounds for antioxidant preservation at food interfaces

Cherry phenolics extracted by 90°C-water were loaded in a low-methoxyl-pectin (LMP) film for antioxidant preservation. Dark red films (pH = 3.46) contained flavonols (dihydrokaempferol-glucoside, quercetin-3-O-rutinoside), hydroxycinnamic acids (neochlorogenic, chlorogenic, 3-p-coumaroylquinic acids...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Basanta, M.F
Otros Autores: Rojas, A.M, Martinefski, M.R, Tripodi, V.P, De'Nobili, M.D, Fissore, E.N
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14967caa a22011897a 4500
001 PAPER-24931
003 AR-BaUEN
005 20230518205652.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85049889809 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JFOED 
100 1 |a Basanta, M.F. 
245 1 0 |a Cherry (Prunus avium) phenolic compounds for antioxidant preservation at food interfaces 
260 |b Elsevier Ltd  |c 2018 
270 1 0 |m Fissore, E.N.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Ciudad UniversitariaArgentina; email: eliana@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ahn, S., Halake, K., Lee, J., Antioxidant and ion-induced gelation functions of pectins enabled bypolyphenol conjugation (2017) Int. J. Biol. Macromol., 101, pp. 776-782 
504 |a Ávila, V., Bertoletti, S.G., Criado, S., Pappano, N., Debattista, N., García, N.A., Antioxidant properties of natural flavonoids: quenching and generation of singlet molecular oxygen (2001) Int. J. Food Sci. Technol., 36, pp. 25-33 
504 |a Basanta, M.F., Marin, A., De Leo, S.A., Gerschenson, L.N., Erlejman, A.G., Tomás-Barberán, F.A., Rojas, A.M., Antioxidant Japanese plum (Prunus salicina) microparticles with potential for food preservation (2016) J. Funct. Foods, 24, pp. 287-296 
504 |a Benbettaïeb, N., Assifaoui, A., Karbowiak, T., Debeaufort, F., Chambin, O., Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation (2016) Radiat. Phys. Chem., 118, pp. 81-86 
504 |a Borges, T.H., López, L.C., Pereira, J.A., Cabrera-Vique, C., Seiquer, I., Comparative analysis of minor bioactive constituents (CoQ10, tocopherols and phenolic compounds) in Arbequina extra virgin olive oils from Brazil and Spain (2017) J. Food Compos. Anal., 63, pp. 47-54 
504 |a Buchner, N., Krumbein, A., Rohn, S., Kroh, L.W., Effect of thermal processing on the flavonols rutin and quercetin (2006) Rapid Commun. Mass Spectrom., 20, pp. 3229-3235 
504 |a Chaovanalikit, A., Wrolstad, R.E., Anthocyanin and polyphenolic composition of fresh and processed cherries authors (2004) J. Food Sci., 69 (1), pp. FCT73-FCT83 
504 |a Cittadini, E.D., Sweet Cherries from the End of the World: Options and Constraints for Fruit Production Systems in South Patagonia (2007), http://edepot.wur.nl/41079, Wageningen University, Holland Argentina Ph.D. thesis (Accessed 26 July 2017); Coutinho, I.B., Freitas, A., Maçanita, A.L., Lima, J.C., Effect of water content on the acid–base equilibrium of cyanidin-3-glucoside (2015) Food Chem., 172, pp. 476-480 
504 |a De Rosso, V.V., Moran Vieyra, F.E., Mercadante, A.Z., Borsarelli, C.D., Singlet oxygen quenching by anthocyanin's flavylium cations (2008) Free Radic. Res., 42 (10), pp. 885-891 
504 |a De'Nobili, M.D., Pérez, C.D., Navarro, D.A., Stortz, C.A., Rojas, A.M., Hydrolytic stability of L-(+)-ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces (2013) Food Bioprocess Technol., 6, pp. 186-197 
504 |a De'Nobili, M.D., Curto, L.M., Delfino, J.M., Soria, M., Fissore, E.N., Rojas, A.M., Performance of alginate films for retention of L-(+)-ascorbic acid (2013) Int. J. Pharm., 450, pp. 95-103 
504 |a De'Nobili, M.D., Rojas, A.M., Abrami, M., Lapasin, R., Grassi, M., Structure characterisation by means of rheological and NMR experiments as a first necessary approach to study the L-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials (2015) J. Food Eng., 165, pp. 82-92 
504 |a De'Nobili, M.D., Soria, M., Martinefski, M.R., Tripodi, V.P., Fissore, E.N., Rojas, A.M., Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation (2016) J. Food Eng., 175, pp. 1-7 
504 |a Dimitrić-Marković, J.M., Mioć, U.B., Baranac, J.M., Nedić, Z.P., A study of the IR spectra of the copigments of malvin chloride with organic acids (2001) J. Serb. Chem. Soc., 66 (7), pp. 451-462 
504 |a Dimitrić-Marković, J.M., Baranac, J.M., Brnadić, T.P., Electronic and infrared vibrational analysis of cyanidin-quercetin copigment complex (2005) Spectrochim. Acta, 62, pp. 673-680 
504 |a Eiro, M.J., Heinonen, M., Anthocyanin color behavior and stability during storage: effect of intermolecular copigmentation (2002) J. Agric. Food Chem., 50, pp. 7461-7466 
504 |a Espinoza, C., Trigos, A., Medina, M.E., Theoretical study on the photosensitizer mechanism of phenalenone in aqueous and lipid media (2016) J. Phys. Chem., 120, pp. 6103-6110 
504 |a Fasoli, M., Dell'Anna, R., Dal Santo, S., Balestrini, R., Sanson, A., Pezzotti, M., Monti, F., Zenoni, S., Pectins, hemicelluloses and celluloses show specific dynamics in the internal and external surfaces of grape berry skin during ripening (2016) Plant Cell Physiol., 57 (6), pp. 1332-1349 
504 |a Feild, T.S., Lee, D.W., Holbrook, N.M., Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood (2001) Plant Physiol. (Wash. D C), 127, pp. 566-574 
504 |a Flores, S., Conte, A., Campos, C., Gerschenson, L., Del Nobile, M., Mass transport properties of tapioca-based active edible films (2007) J. Food Eng., 81, pp. 580-586 
504 |a Foley, S., Navaratnam, S., McGarvey, D.J., Land, E.J., Truscott, G., Rice-Evans, C.A., Singlet oxygen quenching and the redox properties of hydroxycinnamic acids (1999) Free Radic. Biol. Med., 26 (9-10), pp. 1202-1208 
504 |a Gómez-Mascaraque, L.G., Dhital, S., López Rubio, A., Gidley, M.J., Dietary polyphenols bind to potato cells and cellular components (2017) J. Funct. Foods, 37, pp. 283-292 
504 |a Goss-Sampson, M., Vivian, A.J., Kelly, F.J., Free radicals, inflammation and eye diseases (1995) Immunopharmacology of Free Radical Species, p. 127. , D. Blake P.G. Winyard Academic Press Ltd London 
504 |a Hauke, J., Kossowski, T., Comparison of values of Pearson's and spearman's correlation coefficients on the same sets of data (2011) Quaest. Geogr., 30 (2), pp. 87-93 
504 |a Hernández-Herrero, J.A., Frutos, M.J., Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices (2015) Food Chem., 173, pp. 495-500 
504 |a Huang, S., Ma, Y., Zhang, C., Cai, S., Pang, M., Bioaccessibility and antioxidant activity of phenolics in native and fermented Prinsepia utilis Royle seed during a simulated gastrointestinal digestion in vitro (2017) J. Funct. Foods, 37, pp. 354-362 
504 |a Idham, Z., Muhamad, I.I., Sarmidi, M.R., Degradation kinetics and color stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L (2012) J. Food Process. Eng., 35 (4), pp. 522-542 
504 |a Idrovo Encalada, A.M., Basanta, M.F., Fissore, E.N., De'Nobili, M.D., Rojas, A.M., Carrot fiber (CF) composite films for antioxidant preservation: particle size effect (2016) Carbohydr. Polym., 136, pp. 1041-1051 
504 |a Janković, I.A., Šaponjić, Z.V., Čomor, M.I., Nedeljković, J.M., Surface modification of colloidal tio2 nanoparticles with bidentate benzene derivatives (2009) J. Phys. Chem. C, 113, pp. 12645-12652 
504 |a Lavelli, V., Kerr, W., Apple pomace is a good matrix for phytochemical retention (2012) J. Agric. Food Chem., 60, pp. 5660-5666 
504 |a Liu, Y., Bandhari, B., Zhou, W., Glass transition and enthalpy relaxation of amorphous food saccharides: a Review (2006) J. Agric. Food Chem., 54, pp. 5701-5717 
504 |a Morales, J., Günther, G., Zanocco, A.L., Lemp, E., Singlet oxygen reactions with flavonoids. A theoretical-experimental study (2012) PLoS One, 7 (7) 
504 |a Mrad, N.D., Boudhrioua, N., Kechaou, N., Courtois, F., Bonazzi, C., Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears (2012) Food Bioprod. Process., 90 (3), pp. 433-441 
504 |a Patras, A., Brunton, N.P., O'Donnell, C., Tiwari, B.K., Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation (2010) Trends Food Sci. Technol., 21, pp. 3-11 
504 |a Pérez, C.D., Flores, S.K., Marangoni, A.G., Gerschenson, L.N., Rojas, A.M., Development of a high methoxyl-pectin edible film for retention of L-(+)-ascorbic acid (2009) J. Agric. Food Chem., 57, pp. 6844-6855 
504 |a Qadir, M.A., Shahzadi, S.K., Bashir, A., Munir, A., Shahzad, S., Evaluation of phenolic compounds and antioxidant and antimicrobial activities of some common herbs (2017) Int. J. Anal. Chem, 2017, pp. 1-6. , https://doi.org/10.1155/2017/3475738, Article ID 3475738 
504 |a Renard, C.M.G.C., Watrelot, A.A., Le Bourvellec, C., Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion (2015) 29th EFFoST Int. Conf. Proceed. 10–12 November, Athens, Greece 
504 |a Sokal, R.R., Rohlf, J.B., Biometry: the Principles and Practice of Statistics in Biological Research (2000), third ed. W. H. Freeman and Company San Francisco (pp. 253–380); Sun, J., Mei, Z., Tang, Y., Ding, L., Jiang, G., Zhang, C., Sun, A., Bai, W., Stability, antioxidant capacity and degradation kinetics of pelargonidin-3-glucoside exposed to ultrasound power at low temperature (2016) Molecules, 21, p. 1109 
504 |a Synytsya, A., Copikova, J., Jankovska, P., Spectroscopic estimation of feruloyl groups in sugar beet pulp and pectin (2003) Int. Sugar J., 105, pp. 481-488 
504 |a Taghvaei, M., Jafari, S.M., Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives (2015) J. Food Sci. Technol., 52 (3), pp. 1272-1282 
504 |a Vankar, P.S., Shuklar, D., Natural Dyeing with anthocyanins from Hibiscus rosa sinensis flowers (2011) J. Appl. Polym. Sci., 122 (5), pp. 3361-3368 
504 |a Xiao, H.W., Pan, Z., Deng, L.Z., El-Mashad, H.M., Yang, X.H., Mujumdar, A.S., Gao, Z.J., Zhang, Q., Recent developments and trends in thermal blanching-A comprehensive review (2017) Inf. Proc. Agric, 4, pp. 101-127 
504 |a Yamasaki, H., Uefuji, H., Sakihama, Y., Bleaching of the red anthocyanin induced by superoxide radical (1996) Arch. Biochem. Biophys., 332, pp. 183-186 
504 |a Zweig, A., Henderson, W.A., Jr., Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers, and reactants (1975) J. Polym. Sci., 13, pp. 717-736 
520 3 |a Cherry phenolics extracted by 90°C-water were loaded in a low-methoxyl-pectin (LMP) film for antioxidant preservation. Dark red films (pH = 3.46) contained flavonols (dihydrokaempferol-glucoside, quercetin-3-O-rutinoside), hydroxycinnamic acids (neochlorogenic, chlorogenic, 3-p-coumaroylquinic acids), and anthocyanins (cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside), with a 6.97 × 10−12 m2/s diffusion coefficient. Phenolics’ stability was studied at constant relative humidity (RH: 57.7; 75.2%) and 25.0 °C. The pseudo-first-order de gradation rate was the highest (t1/2 = 3-2 months) and increased with the equilibration RH in darkness for anthocyanins, with simultaneous red vanishing by water nucleophilic attack. Instead, flavonols remained stable (t1/2 >1.5 years). Light (75.2%RH) induced the highest phenolics-degradation-rates, especially for anthocyanins (t1/2 = 11d), sensitizer, and film red color. Flavonols-decay was the slowest (t1/2 = 7–12 months). Antioxidant capacity paralleled phenolics-content. Hydroxycinnamic acids followed by flavonols could scavenge the singlet oxygen. Light-triggered LMP-matrix―phenolic interactions were determined, producing the lowest film water content and deformability. Cherry phenolics stabilized as a colored film constituted a food preserving antioxidant barrier. © 2018 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 2014-2017 20020130100553BA 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2013-2088, PICT 2012-1941, PICT 2015-2109 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 2012-2014 PIP112-201101-00349 
536 |a Detalles de la financiación: For the financial support of the University of Buenos Aires [ 2014-2017 20020130100553BA ], CONICET [ 2012-2014 PIP112-201101-00349 ], and ANPCyT [ PICT 2012-1941 ; PICT 2013-2088 ; PICT 2015-2109 ]. We thank Lic. Graciela Guananja (CP-Kelco) for providing the pectin. 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina 
593 |a Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, University of Buenos Aires, Junin 954, Buenos Aires, C1113AAD, Argentina 
593 |a Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, University of Buenos Aires, Junin 954, Buenos Aires, C1113AAD, Argentina 
593 |a Fellow of CONICET, Argentina 
593 |a Member of CONICET, Argentina 
690 1 0 |a ANTIOXIDANT PECTIN FILM 
690 1 0 |a CHERRY ANTHOCYANINS 
690 1 0 |a FLAVONOLS 
690 1 0 |a HYDROXYCINNAMIC ACIDS 
690 1 0 |a QUERCETIN-3-O-RUTINOSIDE 
690 1 0 |a TOTAL PHENOLICS-RELEASE 
690 1 0 |a ANTIOXIDANTS 
690 1 0 |a CARBOHYDRATES 
690 1 0 |a DEGRADATION 
690 1 0 |a FLAVONOIDS 
690 1 0 |a PHENOLS 
690 1 0 |a FLAVONOLS 
690 1 0 |a HYDROXYCINNAMIC ACIDS 
690 1 0 |a PECTIN FILMS 
690 1 0 |a QUERCETIN-3-O-RUTINOSIDE 
690 1 0 |a TOTAL PHENOLICS 
690 1 0 |a ANTHOCYANINS 
700 1 |a Rojas, A.M. 
700 1 |a Martinefski, M.R. 
700 1 |a Tripodi, V.P. 
700 1 |a De'Nobili, M.D. 
700 1 |a Fissore, E.N. 
773 0 |d Elsevier Ltd, 2018  |g v. 239  |h pp. 15-25  |p J Food Eng  |x 02608774  |w (AR-BaUEN)CENRE-5580  |t Journal of Food Engineering 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049889809&doi=10.1016%2fj.jfoodeng.2018.06.028&partnerID=40&md5=201e6295ec9106f4abb6e49c5bef2b5a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jfoodeng.2018.06.028  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02608774_v239_n_p15_Basanta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v239_n_p15_Basanta  |y Registro en la Biblioteca Digital 
961 |a paper_02608774_v239_n_p15_Basanta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85884