Silicon Quantum Dots Metal-Enhanced Photoluminescence by Gold Nanoparticles in Colloidal Ensembles: Effect of Surface Coating

In the present study, we report the photophysical properties of colloidal ensembles of silicon quantum dots (SiDs) and gold nanoparticles (AuNPs), particularly focusing on investigating metal-enhanced photoluminescence (PL) effects. AuNPs with different sizes, (27 ± 10) and (88 ± 12) nm, and ca. 3.4...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Romero, J.J
Otros Autores: Hodak, J.H, Rodríguez, H.B, Gonzalez, M.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14668caa a22012497a 4500
001 PAPER-24957
003 AR-BaUEN
005 20230518205654.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85056993708 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Romero, J.J. 
245 1 0 |a Silicon Quantum Dots Metal-Enhanced Photoluminescence by Gold Nanoparticles in Colloidal Ensembles: Effect of Surface Coating 
260 |b American Chemical Society  |c 2018 
270 1 0 |m Gonzalez, M.C.; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de la PlataArgentina; email: gonzalez@inifta.unlp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Zhang, Y., Dragan, A., Geddes, C.D., Wavelength Dependence of Metal-Enhanced Fluorescence (2009) J. Phys. Chem. C, 113, pp. 12095-12100 
504 |a Geddes, C.D., Lakowicz, J.R., Metal-Enhanced Fluorescence (2002) J. Fluoresc., 12, pp. 121-129 
504 |a Zhang, Y., Aslan, K., Previte, M.J.R., Geddes, C.D., Metal-Enhanced e -Type Fluorescence (2008) Appl. Phys. Lett., 92, p. 013905 
504 |a Lee, J., Lee, S., Jen, M., Pang, Y., Metal-Enhanced Fluorescence: Wavelength-Dependent Ultrafast Energy Transfer (2015) J. Phys. Chem. C, 119, pp. 23285-23291 
504 |a Kotkowiak, M., Dudkowiak, A., Multiwavelength Excitation of Photosensitizers Interacting with Gold Nanoparticles and Its Impact on Optical Properties of Their Hybrid Mixtures (2015) Phys. Chem. Chem. Phys., 17, pp. 27366-27372 
504 |a Kang, K.A., Wang, J., Jasinski, J.B., Achilefu, S., Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement (2011) J. Nanobiotechnol., 9, p. 16 
504 |a Chen, J., Jin, Y., Fahruddin, N., Zhao, J.X., Development of Gold Nanoparticle-Enhanced Fluorescent Nanocomposites (2013) Langmuir, 29, pp. 1584-1591 
504 |a Vukovic, S., Corni, S., Mennucci, B., Fluorescence Enhancement of Chromophores Close to Metal Nanoparticles. Optimal Setup Revealed by the Polarizable Continuum Model (2009) J. Phys. Chem. C, 113, pp. 121-133 
504 |a Abadeer, N.S., Brennan, M.R., Wilson, W.L., Murphy, C.J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods (2014) ACS Nano, 8, pp. 8392-8406 
504 |a Tsung Chen, I., Chang, P.-H., Chang, Y.-C., Guo, T.-F., Lighting Up Ultraviolet Fluorescence from Chicken Albumen Through Plasmon Resonance Energy Transfer of Gold Nanoparticles (2013) Sci. Rep., 3, p. 1505 
504 |a Harun, N.A., Benning, M.J., Horrocks, B.R., Fulton, D.A., Gold Nanoparticle-Enhanced Luminescence of Silicon Quantum Dots Co-Encapsulated in Polymer Nanoparticles (2013) Nanoscale, 5, pp. 3817-3827 
504 |a Guidelli, E.J., Baffa, O., Clarke, D.R., Enhanced UV Emission from Silver/ZnO and Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, and Optically Stimulated Luminescence (2015) Sci. Rep., 5, p. 14004 
504 |a Nepal, D., Drummy, L.F., Biswas, S., Park, K., Vaia, R.A., Large Scale Solution Assembly of Quantum Dot-Gold Nanorod Architectures with Plasmon Enhanced Fluorescence (2013) ACS Nano, 7, pp. 9064-9074 
504 |a Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Román, E., Rodríguez, H.B., Gonzalez, M.C., Silicon Nanoparticle Photophysics and Singlet Oxygen Generation (2010) Langmuir, 26, pp. 10953-10960 
504 |a Lillo, C.R., Romero, J.J., Portolés, M.L., Diez, R.P., Caregnato, P., Gonzalez, M.C., Organic coating of 1-2-nm-size silicon nanoparticles: Effect on particle properties (2015) Nano Res., 8, pp. 2047-2062 
504 |a Khlebtsov, N., Dykman, L., Biodistribution and Toxicity of Engineered Gold Nanoparticles: A Review of in Vitro and in Vivo Studies (2011) Chem. Soc. Rev., 40, pp. 1647-1671 
504 |a Chen, C.-C., Kuo, P.-L., Cheng, Y.-C., Spherical Aggregates Composed of Gold Nanoparticles (2009) Nanotechnology, 20, p. 055603 
504 |a Yonezawa, T., Onoue, S.-Y., Kunitake, T., Growth of Closely Packed Layers of Gold Nanoparticles on an Aligned Ammonium Surface (1998) Adv. Mater., 10, pp. 414-416 
504 |a Neiner, D., Chiu, H.W., Kauzlarich, S.M., Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles (2006) J. Am. Chem. Soc., 128, pp. 11016-11017 
504 |a Rodríguez Sartori, D., Lillo, C.R., Romero, J.J., Dell Arciprete, M.L., Minán, A., Fernández Lorenzo De Mele, M., Gonzalez, M.C., PEG-Coated Blue-Emitting Silicon Dots with Improved Properties for Uses in Aqueous and Biological Environments (2016) Nanotechnology, 25, p. 4757040 
504 |a Custer, J.S., Thompson, M.O., Jacobson, D.C., Poate, J.M., Roorda, S., Sinke, W.C., Spaepen, F., Density of Amorphous Si (1994) Appl. Phys. Lett., 64, pp. 437-439 
504 |a Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G., Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra (2007) Anal. Chem., 79, pp. 4215-4221 
504 |a Turkevich, J., Stevenson, P.C., Hillier, J., A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold (1951) Discuss. Faraday Soc., 11, pp. 55-75 
504 |a Brown, K.R., Natan, M.J., Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces (1998) Langmuir, 14, pp. 726-728 
504 |a Romero, J.J., Llansola-Portolés, M.J., Dell'Arciprete, M.L., Rodríguez, H.B., Moore, A.L., Gonzalez, M.C., Photoluminescent 1-2 nm Sized Silicon Nanoparticles: A Surface-Dependent System (2013) Chem. Mater., 25, pp. 3488-3498 
504 |a (2012) NIST X-ray Photoelectron Spectroscopy Database, , National Institute of Standards and Technology. version 4.1, Gaithersburg, MD 
504 |a Llansola Portolés, M.J., Pis Diez, R., Dell'Arciprete, M.L., Caregnato, P., Romero, J.J., Mártire, D.O., Azzaroni, O., Gonzalez, M.C., Understanding the Parameters Affecting the Photoluminescence of Silicon Nanoparticles (2012) J. Phys. Chem. C, 116, pp. 11315-11325 
504 |a Boal, A.K., Ilhan, F., Derouchey, J.E., Thurn-Albrecht, T., Russell, T.P., Rotello, V.M., Self-Assembly of Nanoparticles into Structured Spherical and Network Aggregates (2000) Nature, 404, pp. 746-748 
504 |a Casaletto, M.P., Longo, A., Martorana, A., Prestianni, A., Venezia, A.M., XPS Study of Supported Gold Catalysts: The Role of Au0 and Au+δ Species as Active Sites (2006) Surf. Interface Anal., 38, pp. 215-218 
504 |a Kumar, A., Mandal, S., Selvakannan, P.R., Pasricha, R., Mandale, A.B., Sastry, M., Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles (2003) Langmuir, 19, pp. 6277-6282 
504 |a Sylvestre, J.-P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.T., Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media (2004) J. Phys. Chem. B, 108, pp. 16864-16869 
504 |a Mohrhusen, L., Osmić, M., Sterical Ligand Stabilization of Nanocrystals versus Electrostatic Shielding by Ionic Compounds: A Principle Model Study with TEM and XPS (2017) RSC Adv., 7, pp. 12897-12907 
504 |a Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , Springer 
504 |a Ribeiro, T., Baleizao, C., Farinha, J.P.S., Artefact-Free Evaluation of Metal Enhanced Fluorescence in Silica Coated Gold Nanoparticles (2017) Sci. Rep., 7, pp. 1-12 
504 |a Chen, S., Yu, Y.-L., Wang, J.-H., Inner Filter Effect-Based Fluorescent Sensing Systems: A Review (2018) Anal. Chim. Acta, 999, pp. 13-26 
504 |a Kubista, M., Sjöback, R., Eriksson, S., Albinsson, B., Experimental Correction for the Inner-Filter Effect in Fluorescence Spectra (1994) Analyst, 119, pp. 417-419 
504 |a Ray, K., Badugu, R., Lakowicz, J.R., Distance-Dependent Metal-Enhanced Fluorescence from Langmuir-Blodgett Monolayers of Alkyl-NBD Derivatives on Silver Island Films (2006) Langmuir, 26, pp. 8374-8378 
504 |a Asian, K., Lakowicz, J.R., Szmacinski, H., Geddes, C.D., Metal-Enhanced Fluorescence Solution-Based Sensing Platform (2004) J. Fluoresc., 14, pp. 677-679 
504 |a Hoft, R.C., Ford, M.J., McDonagh, A.M., Cortie, M.B., Adsorption of Amine Compounds on the Au(111) Surface: A Density Functional Study (2007) J. Phys. Chem. C, 111, pp. 13886-13891 
504 |a Pong, B.-K., Lee, J.Y., Trout, B.L., (2006) A Computational Study to Understand the Surface Reactivity of Gold Nanoparticles with Amines and DNA, , http://hdl.handle.net/1721.1/30380, (accessed Nov 15, 2018) 
504 |a Sainsbury, T., Ikuno, T., Okawa, D., Pacilé, D., Fréchet, J.M.J., Zettl, A., Self-Assembly of Gold Nanoparticles at the Surface of Amine- and Thiol-Functionalized Boron Nitride Nanotubes (2007) J. Phys. Chem. C, 111, pp. 12992-12999 
504 |a Dharanivasan, G., Rajamuthuramalingam, T., Michael Immanuel Jesse, D., Rajendiran, N., Kathiravan, K., Gold Nanoparticles Assisted Characterization of Amine Functionalized Polystyrene Multiwell Plate and Glass Slide Surfaces (2015) Appl. Nanosci., 5, pp. 39-50 
504 |a Ghosh, S.K., Pal, T., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications (2007) Chem. Rev., 107, pp. 4797-4862 
504 |a Shipway, A.N., Lahav, M., Gabai, R., Willner, I., Investigations into the Electrostatically Induced Aggregation of Au Nanoparticles (2000) Langmuir, 16, pp. 8789-8795 
504 |a Xia, B., He, F., Li, L., Metal-Enhanced Fluorescence Using Aggregated Silver Nanoparticles (2014) Colloids Surf., A, 444, pp. 9-14 
504 |a Martín-Molina, A., Maroto-Centeno, J.A., Hidalgo-Álvarez, R., Quesada-Pérez, M., Testing One Component Plasma Models on Colloidal Overcharging Phenomena (2006) J. Chem. Phys., 125, p. 144906 
504 |a Kim, T., Lee, C.-H., Joo, S.-W., Lee, K., Kinetics of Gold Nanoparticle Aggregation: Experiments and Modeling (2008) J. Colloid Interface Sci., 318, pp. 238-243 
504 |a Liang, Y., Hilal, N., Langston, P., Starov, V., Interaction Forces between Colloidal Particles in Liquid: Theory and Experiment (2007) Adv. Colloid Interface Sci., 134-135, pp. 151-166 
520 3 |a In the present study, we report the photophysical properties of colloidal ensembles of silicon quantum dots (SiDs) and gold nanoparticles (AuNPs), particularly focusing on investigating metal-enhanced photoluminescence (PL) effects. AuNPs with different sizes, (27 ± 10) and (88 ± 12) nm, and ca. 3.4 nm-size SiD with different surface groups, either covered with an oxidized surface film bearing Si-OH surface groups or grafted with propylamine leading to Si-(CH2)2-CH2-NH2 terminal functionalities, were tested to evaluate the gold enhancement of SiD PL. The NPs were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma atomic emission spectroscopy, and gel electrophoresis, whereas the photophysical properties of the NPs, alone and in colloidal ensembles at different concentrations, were investigated by absorption and steady-state and time-resolved PL studies, including quantum yield determinations. Enhanced absorption and PL of SiDs in the presence of AuNPs was evidenced, leading in the most favorable cases to ca. 10 times increase in SiD brightness. This effect depends strongly on the SiD surface coating and its interaction with citrate-capped gold surfaces, where these interactions govern particle aggregation and relative distance distributions among SiDs and AuNPs in the ensembles. The nature of these interactions and how they affect metal-enhanced luminescence is thoroughly discussed. The present study provides significant information on the effect of SiD surface groups and surface charge on the metal-enhanced luminescence phenomenon in colloidal aqueous suspensions. © 2018 American Chemical Society.  |l eng 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de la Plata, La Plata, B1904, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina 
593 |a Instituto de Química Biológica (IQUIBICEN), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a AGGLOMERATION 
690 1 0 |a AMINES 
690 1 0 |a ATOMIC EMISSION SPECTROSCOPY 
690 1 0 |a ELECTROPHORESIS 
690 1 0 |a FIBER OPTIC SENSORS 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a GOLD COATINGS 
690 1 0 |a GOLD NANOPARTICLES 
690 1 0 |a HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a INDUCTIVELY COUPLED PLASMA 
690 1 0 |a METAL NANOPARTICLES 
690 1 0 |a METALS 
690 1 0 |a NANOCRYSTALS 
690 1 0 |a PHOTOLUMINESCENCE 
690 1 0 |a SEMICONDUCTOR QUANTUM DOTS 
690 1 0 |a SILICON 
690 1 0 |a SUSPENSIONS (FLUIDS) 
690 1 0 |a X RAY PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a COLLOIDAL ENSEMBLES 
690 1 0 |a ENHANCED ABSORPTION 
690 1 0 |a GEL ELECTROPHORESIS 
690 1 0 |a INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROSCOPY 
690 1 0 |a METAL ENHANCED LUMINESCENCES 
690 1 0 |a PARTICLE AGGREGATION 
690 1 0 |a PHOTOPHYSICAL PROPERTIES 
690 1 0 |a SILICON QUANTUM DOTS 
690 1 0 |a SILICON COMPOUNDS 
700 1 |a Hodak, J.H. 
700 1 |a Rodríguez, H.B. 
700 1 |a Gonzalez, M.C. 
773 0 |d American Chemical Society, 2018  |g v. 122  |h pp. 26865-26875  |k n. 47  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056993708&doi=10.1021%2facs.jpcc.8b09310&partnerID=40&md5=0662045e2f8f4706b18fc9cd79366683  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpcc.8b09310  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v122_n47_p26865_Romero  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v122_n47_p26865_Romero  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v122_n47_p26865_Romero  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 85910