Susceptibility of placental mitochondria to oxidative stress

Background: Two different mitochondrial fractions (MFs) have been characterized in the human placenta: the “light” and “heavy” fractions (LMF and HMF). Although these organelles are the main source of reactive oxygen species, an imbalance between their production and the rate of detoxification repre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Papa Gobbi, R.
Otros Autores: Magnarelli, G., Rovedatti, M.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11735caa a22010337a 4500
001 PAPER-25024
003 AR-BaUEN
005 20230518205659.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85053709797 
024 7 |2 cas  |a catalase, 9001-05-2; glutathione, 70-18-8; hydrogen peroxide, 7722-84-1; malonaldehyde, 542-78-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Papa Gobbi, R. 
245 1 0 |a Susceptibility of placental mitochondria to oxidative stress 
260 |b John Wiley and Sons Inc.  |c 2018 
270 1 0 |m Rovedatti, M.G.; Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del ComahueArgentina; email: rovedattimg@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Bustamante, J., Ramírez-Vélez, R., Czerniczyniec, A., Cicerchia, D., Aguilar de Plata, A.C., Oxygen metabolism in human placenta mitochondria (2014) Journal of Bioenergetics and Biomembranes, 46, pp. 459-469. , https://doi.org/10.1007/s10863-014-9572-x, Lores-Arnaiz., S 
504 |a Chiapella, G., Genti-Raimondi, S., Magnarelli, G., Placental oxidative status in rural residents environmentally exposed to organophosphates (2014) Environmental Toxicology and Pharmacology, 38, pp. 220-229. , https://doi.org/10.1016/j.etap.2014.06.001 
504 |a Fagan, J.M., Sleczka, B.G., Sohar, I., Quantitation of oxidative damage to tissue proteins (1999) The International Journal of Biochemistry & Cell Biology, 31, pp. 751-757. , PMID 10467731 
504 |a Ferree, A., Shirihai, O., Mitochondrial dynamics: The intersection of form and function (2012) Advances in Experimental Medicine and Biology, 748, pp. 13-40. , https://doi.org/10.1007/978-1-4614-3573-0_2 
504 |a Franco, R., Sánchez-Olea, R., Reyes-Reyes, E.M., Panayiotidis, M.I., Environmental toxicity, oxidative stress and apoptosis: Ménage Trois (2009) Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 674, pp. 3-22. , https://doi.org/10.1016/j.mrgentox.2008.11.012 
504 |a Halliwell, B., Antioxidant characterization. Methodology and mechanism (1995) Biochemical Pharmacology, 49, pp. 1341-1348. , PMID 7763275 
504 |a Holland, O., Nitert, M.N., Gallo, L.A., Vejzovic, M., Fisher, J.J., Perkins, A.V., Review: Placental mitochondrial function and structure in gestational disorders (2017) Placenta, 54, pp. 2-9. , https://doi.org/10.1016/j.placenta.2016.12.012 
504 |a Honzík, T., Drahota, Z., Böhm, M., Jesina, P., Mrácek, T., Paul, J., Houstek, J., Specific properties of heavy fraction of mitochondria from human-term placenta - glycerophosphate-dependent hydrogen peroxide production (2006) Placenta, 27, pp. 348-356. , https://doi.org/10.1016/j.placenta.2005.03.010 
504 |a Illsley, N.P., Glucose transporters in the human placenta (2000) Placenta, 21, pp. 14-22. , https://doi.org/10.1053/plac.1999.0448 
504 |a Ji, L., Brkić, J., Liu, M., Fu, G., Peng, C., Wang, Y.L., Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia (2013) Molecular Aspects of Medicine, 34, pp. 981-1023. , https://doi.org/10.1016/j.mam.2012.12.008 
504 |a Kowaltowski, A.J., Vercesi, A.E., Mitochondrial damage induced by conditions of oxidative stress (2009) Free Radical Biology and Medicine, 26, pp. 463-471. , &, PMID 9895239 
504 |a Li, X., Zhang, M., Pan, X., Xu, Z., Sun, M., "Three hits" hypothesis for developmental origins of health and diseases in view of cardiovascular abnormalities (2017) Birth Defects Research, 109 (10), pp. 744-757. , https://doi.org/10.1002/bdr2.1037 
504 |a Martinez, F., Kiriakidou, M., Strauss, J.F., Structural and functional changes in mitochondria associated with trophoblast differentiation: Methods to isolate enriched preparations of syncytiotrophoblast mitochondria (1997) Endocrinology, 138, pp. 2172-2183. , https://doi.org/10.1210/endo.138.5.5133 
504 |a Natarajan, S.K., Thangaraj, K.R., Eapen, C.E., Ramachandran, A., Mukhopadhya, A., Mathai, M., Balasubramanian, K.A., Liver injury in acute fatty liver of pregnancy: Possible link to placental mitochondrial dysfunction and oxidative stress (2010) Hepatology, 51, pp. 191-200. , https://doi.org/10.1002/hep.23245 
504 |a Poston, L., Raijmakers, M.T.M., Trophoblast oxidative stress, antioxidants and pregnancy outcome - a review (2004) Placenta, 25, pp. 72-78. , https://doi.org/10.1016/j.placenta.2004.01.003 
504 |a Rivero Osimani, V.L., Valdez, S.R., Guiñazú, N., Magnarelli, G., Alteration of syncytiotrophoblast mitochondria function and endothelial nitric oxide synthase expression in the placenta of rural residents (2016) Reproductive Toxicology, 61, pp. 47-57. , https://doi.org/10.1016/j.reprotox.2016.02.018 
504 |a Shibata, E., Nanri, H., Ejima, K., Araki, M., Fukuda, J., Yoshimura, K., Kashimura, M., Enhancement of mitochondrial oxidative stress and up-regulation of antioxidant protein peroxiredoxin III/SP-22 in the mitochondria of human pre-eclamptic placentae (2003) Placenta, 24, pp. 698-705. , https://doi.org/10.1016/S0143-4004(03)00083-3 
504 |a Tabassum, H., Waseem, M., Parvez, S., Qureshi, M.I., Oxaliplatin-induced oxidative stress provokes toxicity in isolated rat liver mitochondria (2015) Archives of Medical Research, 46, pp. 597-603. , https://doi.org/10.1016/j.arcmed.2015.10.002 
504 |a Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues (1969) Analytical Biochemistry, 27, pp. 502-522. , https://doi.org/10.1016/0003-2697 
504 |a Veerbeek, J.H.W., Tissot Van Patot, M.C., Burton, G.J., Yung, H.W., Endoplasmic reticulum stress is induced in the human placenta during labour (2015) Placenta, 36, pp. 88-92. , https://doi.org/10.1016/j.placenta.2014.11.005 
504 |a Vera, B., Santa, C.S., Magnarelli, G., Plasma cholinesterase and carboxylesterase activities and nuclear and mitochondrial lipid composition of human placenta associated with maternal exposure to pesticides (2012) Reproductive Toxicology, 34, pp. 402-407. , https://doi.org/10.1016/j.reprotox.2012.04.007 
504 |a Wahlländer, A., Soboll, S., Sies, H., Linke, I., Müller, M., Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases (1979) FEBS Letters, 97, pp. 138-140. , https://doi.org/10.1016/0014-5793(79)80069-1 
504 |a Watson, A.L., Skepper, J.N., Jauniaux, E., Burton, G.J., Changes in concentration, localization and activity of catalase within the human placenta during early gestation (1998) Placenta, 19, pp. 27-34. , PMID 9481782 
504 |a Wigle, D.T., Arbuckle, T.E., Turner, M.C., Bérubé, A., Yang, Q., Liu, S., Krewski, D., Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants (2008) Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 11, pp. 373-517. , https://doi.org/10.1080/10937400801921320 
520 3 |a Background: Two different mitochondrial fractions (MFs) have been characterized in the human placenta: the “light” and “heavy” fractions (LMF and HMF). Although these organelles are the main source of reactive oxygen species, an imbalance between their production and the rate of detoxification represents a serious threat to mitochondrial homeostasis and, in the case of the placenta, also to the fetus. The aim of this study was to evaluate the antioxidant capacity and susceptibility to oxidative stress in both types of MFs. Methods: Human MFs were isolated from healthy donors (n = 11) and either incubated or not with H2O2. Catalase (CAT) activity, and reduced glutathione (GSH), lipid peroxidation (LP), and protein carbonylation (PC) levels were determined. Results: H2O2 treatment increased LP and PC levels and decreased CAT activity. GSH levels were similar in control and treated MFs. Conclusion: H2O2 caused oxidative damage in both LMF and HMF and the antioxidant system measured in these two MFs responded similarly. To the best of our knowledge, this is the first partial description of the antioxidant defense in placental HMF and LMF performed in a cell-free assay. The small number of antioxidant system parameters measured did not allow detecting differences between HMF and LMF. © 2018 Wiley Periodicals, Inc.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad Nacional del Litoral 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad Nacional del Litoral 
536 |a Detalles de la financiación: 1Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Neuquén, Argentina 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica, Grant/Award Number: PICT-Redes 2007-00214, 2008-2012; Universidad Nacional del Comahue, Grant/Award Number: I004/3, 2009-2012 
593 |a Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Neuquén, Argentina 
593 |a Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina 
593 |a Instituto de Estudios Inmunológicos y Fisiopatológicos –IIFP (CONICET‐Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a MITOCHONDRIA 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a REACTIVE OXYGEN SPECIES 
690 1 0 |a CATALASE 
690 1 0 |a GLUTATHIONE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a MALONALDEHYDE 
690 1 0 |a ADULT 
690 1 0 |a ANTIOXIDANT ACTIVITY 
690 1 0 |a ARTICLE 
690 1 0 |a CELL ISOLATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENZYMATIC ASSAY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FEMALE 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN TISSUE 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a MITOCHONDRION 
690 1 0 |a NORMAL HUMAN 
690 1 0 |a OXIDATION 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PROTEIN CARBONYLATION 
690 1 0 |a PROTEIN DETERMINATION 
690 1 0 |a SPECTROPHOTOMETRY 
650 1 7 |2 spines  |a PLACENTA 
650 1 7 |2 spines  |a PLACENTA 
700 1 |a Magnarelli, G. 
700 1 |a Rovedatti, M.G. 
773 0 |d John Wiley and Sons Inc., 2018  |g v. 110  |h pp. 1228-1232  |k n. 16  |p Birth Defects Res.  |x 24721727  |t Birth Defects Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053709797&doi=10.1002%2fbdr2.1377&partnerID=40&md5=118070db4123e765f4a8f113c7c77c30  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/bdr2.1377  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_24721727_v110_n16_p1228_PapaGobbi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24721727_v110_n16_p1228_PapaGobbi  |y Registro en la Biblioteca Digital 
961 |a paper_24721727_v110_n16_p1228_PapaGobbi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85977