Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin

Glassy carbon electrodes (GC) were modified with multiwalled carbon nanotubes (MWCNT/GC) and electrochemically treated first by applying an oxidation potential and then a reduction potential. The resulting electrodes were characterized via scanning electron microscopy, Raman spectroscopy, energy dis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonetto, M.C
Otros Autores: Muñoz, F.F, Diz, V.E, Sacco, N.J, Cortón, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15135caa a22012737a 4500
001 PAPER-25082
003 AR-BaUEN
005 20230518205704.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85049342090 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ELCAA 
100 1 |a Bonetto, M.C. 
245 1 0 |a Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin 
260 |b Elsevier Ltd  |c 2018 
270 1 0 |m Bonetto, M.C.; Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Argentina; email: celinatt@yahoo.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Magdesieva, T.V., Shvets, P.V., Nikitin, O.M., Obraztsova, E.A., Tuyakova, F.T., Sergeyev, V.G., Khokhlov, A.R., Obraztsov, A.N., Electrochemical characterization of mesoporous nanographite films (2016) Carbon, 105, pp. 96-102 
504 |a Nardecchia, S., Carriazo, D., Ferrer, M.L., Gutiérrez, M.C., del Monte, F., Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications (2013) Chem. Soc. Rev., 42, pp. 794-830 
504 |a Yang, C., Denno, M.E., Pyakurel, P., Venton, B.J., Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review (2015) Anal. Chim. Acta, 887, pp. 17-37 
504 |a Rahman, M., Beg, S., Ahmad, M.Z., Anwar, F., Kumar, V., Graphene and its diverse applications in healthcare systems (2016) Graphene Science Handbook, 5, p. 399. , M. Aliofkhazraei N. Ali W.I. Milne C.S. Ozkan S. Mitura J.L. Gervasoni CRC Press Taylor & Francis Group Florida Sec. III 
504 |a Pandikumar, A., How, G.T.S., See, T.P., Omar, F.S., Jayabal, S., Kamali, K.Z., Yusoff, N., Huang, N.M., Graphene and its nanocomposite material based electrochemical sensor platform for dopamine (2014) RSC Adv., 4, pp. 63296-63323 
504 |a Sreeprasad, T.S., Berry, V., How do the electrical properties of graphene change with its functionalization? (2013) Small, 9, pp. 341-350 
504 |a Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Novoselov, K.S., Control of graphene's properties by reversible hydrogenation: evidence for graphane (2009) Science, 323, pp. 610-613 
504 |a Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties (2009) Nano Lett., 9, pp. 1752-1758 
504 |a Mohanty, N., Moore, D., Xu, Z., Sreeprasad, T.S., Nagaraja, A., Rodriguez, A.A., Berry, V., Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size (2012) Nat. Commun., 3, pp. 1-8 
504 |a Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80. , 1339-1339 
504 |a Sharma, K.R., Synthesis methods for graphene (2016) Graphene Science Handbook, 1, p. 31. , M. Aliofkhazraei N. Ali W.I. Milne C.S. Ozkan S. Mitura J.L. Gervasoni Sec. I, CRC Press Taylor & Francis Group Florida 
504 |a Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons (2009) Nature, 458, pp. 872-876 
504 |a Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., Xia, X.H., A green approach to the synthesis of graphene nanosheets (2009) ACS Nano, 3, pp. 2653-2659 
504 |a Shinde, D.B., Debgupta, J., Kushwaha, A., Aslam, M., Pillai, V.K., Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons (2011) J. Am. Chem. Soc., 133, pp. 4168-4171 
504 |a Yao, J.K., Dougherty, G.G., Jr., Reddy, R.D., Keshavan, M.S., Montrose, D.M., Matson, W.R., Rozen, S., Kaddurah-Daouk, R., Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia (2009) Mol. Psychiatr., 15, pp. 938-953 
504 |a Roiser, J.P., McLean, A., Ogilvie, A.D., Blackwell, A.D., Bamber, D.J., Goodyer, I., Jones, P.B., Sahakian, B.J., The subjective and cognitive effects of acute phenylalanine and tyrosine depletion in patients recovered from depression (2005) Neuropsychopharmacology, 30, pp. 775-785 
504 |a Han, H.S., Lee, H.K., You, J.-M., Jeong, H., Jeon, S., Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin (2014) Sens. Actuators B, 190, pp. 886-895 
504 |a De Deurwaerdère, P., Di Giovanni, G., Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications (2017) Prog. Neurobiol., 151, pp. 175-236 
504 |a Kissinger, P.T., Hart, J.B., Adams, R.N., Voltammetry in brain tissue - a new neurophysiological measurement (1973) Brain Res., 55, pp. 209-213 
504 |a Ali, S.R., Parajuli, R.R., Balogun, Y., Ma, Y., He, H., A non oxidative electrochemical sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine: a review (2008) Sensors, 8, pp. 8423-8452 
504 |a Robinson, D.L., Hermans, A., Seipel, A.T., Wightman, R.M., Monitoring rapid chemical communication in the brain (2008) Chem. Rev., 108, pp. 2554-2584 
504 |a Troyer, K.P., Heien, M.L., Venton, B.J., Wightman, R.M., Neurochemistry and electroanalytical probes (2002) Curr. Opin. Chem. Biol., 6, pp. 696-703 
504 |a Xu, T.-Q., Zhang, Q.-L., Zheng, J.-N., Lv, Z.-Y., Wei, J., Wang, A.-J., Feng, J.-J., Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide (2014) Electrochim. Acta, 115, pp. 109-115 
504 |a Yang, L., Liu, D., Huang, J., You, T., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode (2014) Sens. Actuators B, 193, pp. 166-172 
504 |a Qi, S., Zhao, B., Tang, H., Jiang, X., Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene (2015) Electrochim. Acta, 161, pp. 395-402 
504 |a Zhou, J., Sheng, M., Jiang, X., Wu, G., Gao, F., Simultaneous determination of dopamine, serotonin and ascorbic acid at a glassy carbon electrode modified with carbon-spheres (2013) Sensors, 13, pp. 14029-14040 
504 |a Li, H., Wang, Y., Ye, D., Luo, J., Su, B., Zhang, S., Kong, J., An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite (2014) Talanta, 127, pp. 255-261 
504 |a Filik, H., Avan, A.A., Aydar, S., Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode (2015) Arab. J. Chem., 9, pp. 471-480 
504 |a Wang, C., Yuan, R., Yaquin, C., Chen, S., Hu, F., Zhang, M., Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode (2012) Anal. Chim. Acta, 741, pp. 15-20 
504 |a Ramachandran, A., Panda, S., Yesodha, S.K., Physiological level and selective electrochemical sensing of dopamine by a solution processable graphene and its enhanced sensing property in general (2018) Sens. Actuators B, 256, pp. 488-497 
504 |a Velicky, M., Tam, K.Y., Dryfe, R.A.W., On the stability of the silver/silver sulfate reference electrode (2012) Anal. Methods, 4, pp. 1207-1211 
504 |a Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform (2012) J. Cheminf., 4, pp. 1-33 
504 |a Pei, S., Cheng, H.-M., The reduction of graphene oxide (2012) Carbon, 50, pp. 3210-3228 
504 |a Krasheninnikov, A.V., Banhart, F., Engineering of nanostructured carbon materials with electron or ion beams (2007) Nat. Mater., 6, pp. 723-733 
504 |a Yoon, D., Cheong, H., Raman spectroscopy for characterization of graphene (2012) Raman Spectroscopy for Nanomaterials Characterization, p. 191. , C.S.S.R. Kumar Springer Berlin Ch. 9 
504 |a McCreery, R.L., Advanced carbon electrode materials for molecular electrochemistry (2008) Chem. Rev., 108, pp. 2646-2687 
504 |a Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., Banks, C.E., Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene (2014) Nanoscale, 6, pp. 1607-1621 
504 |a Lu, J., Do, I., Drzal, L.T., Worden, R.M., Lee, I., Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response (2008) ACS Nano, 2, pp. 1825-1832 
504 |a Wang, L., Yamauchi, Y., Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst (2009) Chem. Mater., 21, pp. 3562-3569 
504 |a Brownson, D.A.C., Kelly, P.J., Banks, C.E., In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach (2015) RSC Adv., 5, pp. 37281-37286 
504 |a Nicholson, R.S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics (1965) Anal. Chem., 37, pp. 1351-1355 
504 |a Bard, A.J., Faulkner, L.R., Electrochemical Methods, Fundamentals and Applications (2001), Ch. 3 John Wiley & Sons Texas; Brett, C.M.A., Oliveira Brett, A.M., Electrochemistry Principles, Methods, and Applications, Part I (1993), Oxford University Press Oxford; Matsuda, H., Ayabe, Y., The theory of the cathode-ray polarography of Randles-Sevcik (1955) Z. Electrochem., 59, pp. 494-503 
504 |a Kong, H.X., Hybrids of carbon nanotubes and graphene/graphene oxide (2013) Cur. Opin. Solid State Mater. Sci., 17, pp. 31-37 
520 3 |a Glassy carbon electrodes (GC) were modified with multiwalled carbon nanotubes (MWCNT/GC) and electrochemically treated first by applying an oxidation potential and then a reduction potential. The resulting electrodes were characterized via scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and electrochemical techniques, particularly cyclic voltammetry using the redox probes Fe(CN)6 3− /4- and Ru(NH3)2+/3+ and electrochemical impedance spectroscopy using Fe(CN)6 3− /4-. These modified electrodes showed an electrochemical determination selective for dopamine (DA) and serotonin (5HT) in the presence of ascorbic acid (AA) and uric acid (UA), simultaneously measured, with a high reproducibility (an RSD of 1.7% for DA and 1.6% for 5HT) and a limit of detection (LOD) of 235 nmol L−1 for DA and 460 nmol L−1 for 5HT. The GC electrodes modified with oxidized MWCNT, subsequently reduced, showed higher selectivity towards the oxidation of DA and 5HT compared with GC bare electrodes or modified with MWCNT or oxidized MWCNT. © 2018 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Inter-American Development Bank, PICT 2014-3407, PICT 2014-0402 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 112-200801-00502 
536 |a Detalles de la financiación: This work was supported by the University of Buenos Aires (IQUIBICEN-CONICET), the National Council for Scientific and Technological Research (CONICET, PIP 112-200801-00502 ), and the ANPCyT (Préstamo BID, PICT 2014-3407 and PICT 2014-0402 ). We also want to thank to Silvia Rodriguez, for editing this manuscript and CONICET Researcher Leonardo Slep for kindly provide us hexaammineruthenium (III) chloride, without his help, the electrochemical characterization of the electrodes with this outer-sphere redox probe would not have been possible. 
593 |a Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina 
593 |a Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina 
593 |a DEINSO (Departamento de Investigaciones en Sólidos), UNIDEF-CITEDEF, J.B. de la Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina 
593 |a CONICET, Buenos Aires, Argentina 
690 1 0 |a DOPAMINE 
690 1 0 |a ELECTROCHEMICAL TREATMENT 
690 1 0 |a HYBRID FILM 
690 1 0 |a MULTIWALLED CARBON NANOTUBES 
690 1 0 |a SEROTONIN 
690 1 0 |a AMINES 
690 1 0 |a ASCORBIC ACID 
690 1 0 |a CHEMICAL DETECTION 
690 1 0 |a CYCLIC VOLTAMMETRY 
690 1 0 |a ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 
690 1 0 |a ENERGY DISPERSIVE SPECTROSCOPY 
690 1 0 |a GLASS MEMBRANE ELECTRODES 
690 1 0 |a NEUROPHYSIOLOGY 
690 1 0 |a OXIDATION 
690 1 0 |a SCANNING ELECTRON MICROSCOPY 
690 1 0 |a YARN 
690 1 0 |a DOPAMINE 
690 1 0 |a ELECTROCHEMICAL DETERMINATION 
690 1 0 |a ELECTROCHEMICAL TECHNIQUES 
690 1 0 |a ELECTROCHEMICAL TREATMENTS 
690 1 0 |a GLASSY CARBON ELECTRODES 
690 1 0 |a HYBRID FILM 
690 1 0 |a SELECTIVE DETERMINATION 
690 1 0 |a SEROTONIN 
690 1 0 |a MULTIWALLED CARBON NANOTUBES (MWCN) 
700 1 |a Muñoz, F.F. 
700 1 |a Diz, V.E. 
700 1 |a Sacco, N.J. 
700 1 |a Cortón, E. 
773 0 |d Elsevier Ltd, 2018  |g v. 283  |h pp. 338-348  |p Electrochim Acta  |x 00134686  |w (AR-BaUEN)CENRE-12  |t Electrochimica Acta 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049342090&doi=10.1016%2fj.electacta.2018.06.179&partnerID=40&md5=72fd2500b28d0ecd6074b047a81a4f24  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.electacta.2018.06.179  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00134686_v283_n_p338_Bonetto  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v283_n_p338_Bonetto  |y Registro en la Biblioteca Digital 
961 |a paper_00134686_v283_n_p338_Bonetto  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86035