Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors

Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) Drechslera sp., isolated from the roots of rye grass (Lollium sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilidehydroxamic acid (SAHA) and othe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Siless, G.E
Otros Autores: Gallardo, G.L, Rodriguez, M.A, Rincón, Y.A, Godeas, A.M, Cabrera, G.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-VCH Verlag 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17535caa a22017417a 4500
001 PAPER-25114
003 AR-BaUEN
005 20230518205706.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85050730831 
024 7 |2 cas  |a piperazinedione, 29990-68-9; vorinostat, 149647-78-9; histone deacetylase, 9076-57-7; Antifungal Agents; Histone Deacetylase Inhibitors; Histone Deacetylases 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CBHIA 
100 1 |a Siless, G.E. 
245 1 0 |a Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors 
260 |b Wiley-VCH Verlag  |c 2018 
506 |2 openaire  |e Política editorial 
504 |a Newsham, K.K., A Meta-Analysis of Plant Responses to Dark Septate Root Endophytes (2011) New Phytol., 190, pp. 783-793 
504 |a Kivlin, S.N., Emery, S.M., Rudgers, J.A., Fungal Symbionts Alter Plant Responses to Global Change (2013) Am. J. Bot., 100, pp. 1445-1457 
504 |a Osterhage, C., König, G.M., Höller, U., Wright, A.D., Rare Sesquiterpenes from the Algicolous Fungus Drechslera dematioidea (2002) J. Nat. Prod., 65, pp. 306-313 
504 |a Abdel-Lateff, A., Okino, T., Alarif, W.M., Al-Lihaibi, S.S., Sesquiterpenes from the Marine Algicolous Fungus Drechslera sp (2013) J. Saudi Chem. Soc., 17, pp. 161-165 
504 |a El-Gendy, M.M.A.A., Ten, N.M., Ibrahim, H.A.E.H., El-Baky, D.H.A., Heavy Metals Biosorption from Aqueous Solution by Endophytic Drechslera hawaiiensis of Morusalba L. Derived from Heavy Metals Habitats (2017) Mycobiology, 45, pp. 73-83 
504 |a Kastanias, M.A., Chrysayi-Tokousbalides, M., Herbicidal Potential of Pyrenophorol Isolated from a Drechslera avenae Pathotype (2000) Pest Manag. Sci., 56, pp. 227-232 
504 |a Read, E., Edwards, J., Deseo, M., Rawlin, G., Rochfor, S., Current Understanding of Acute Bovine Liver Disease in Australia (2017) Toxins, 9, p. 8 
504 |a Sugawara, F., Hallock, Y.F., Bunkers, G.D., Kenfield, D.S., Strobel, G., Yoshida, S., Phytoactive Eremophilanes Produced by the Weed Pathogen Drechslera gigantea (1993) Biosci. Biotech. Biochem., 57, pp. 236-239 
504 |a Evidente, A., Andolfi, A., Cimmino, A., Vurro, M., Fracchiolla, M., Charudattan, R., Motta, A., Ophiobolin E and 8-epi-ophiobolin J Produced by Drechslera gigantea, a Potential Mycoherbicide of Weedy Grasses (2006) Phytochemistry, 67, pp. 2281-2287 
504 |a Sugawara, F., Strobel, G., Strange, R.N., Siedow, J.N., Van Duyne, G.D., Clardy, J., Phytotoxins from the Pathogenic Fungi Drechslera maydis and Drechslera sorghicola (1987) Proc. Natl. Acad. Sci. U.S.A., 84, pp. 3081-3085 
504 |a Zhang, G.-F., Guo, Z.-K., Wang, W., Cui, J.-T., Tan, R.-X., Ge, H.-M., Neuraminidase Inhibitory Terpenes from Endophytic Cochliobolus sp (2011) J. Asian Nat. Prod. Res., 13, pp. 761-764 
504 |a Nozoe, S., Morisaki, M., Tsuda, K., Iitaka, Y., Takahashi, N., Tamura, S., Ishibashi, K., Shirasaka, M., The Structure of Ophiobolin, a C25 Terpenoid having a Novel Skeleton (1965) J. Am. Chem. Soc., 87, pp. 4968-4970 
504 |a Nozoe, S., Hirai, K., Tsuda, K., Ishibashi, K., Shirasaka, M., Grove, J.F., The Structure of Pyrenophorin (1965) Tetrahedron Lett., 51, pp. 4675-4677 
504 |a Evidente, A., Andolfi, A., Vurro, M., Fracchiolla, M., Zonno, M.C., Motta, A., Drazepinone, a Trisubstituted Tetrahydronaphthofuroazepinone with Herbicidal Activity Produced by Drechslera siccans (2005) Phytochemistry, 66, pp. 715-721 
504 |a Sugawara, F., Takahashi, N., Strobel, G.A., Strobel, S.A., Lu, H.S.M., Clardy, J., Triticones A and B, Novel Phytotoxins from the Plant Pathogenic Fungus Drechslera tritici-repentis (1988) J. Am. Chem. Soc., 110, pp. 4086-4087 
504 |a Awaad, A.S., Al-Zaylaee, H.M., Alqasoumi, S.I., Zain, M.E., Aloyan, E.M., Alafeefy, A.M., Awad, E.S.H., El-Meligy, R.M., Anti-Leishmanial Activities of Extracts and Isolated Compounds from Drechslera rostrata and Eurotium tonpholium (2014) Phytother. Res., 28, pp. 774-780 
504 |a Bode, H.B., Bethe, B., Höfs, R., Zeeck, A., Big Effects from Small Changes: Possible Ways to Explore Nature's Chemical Diversity (2002) ChemBioChem, 3, pp. 619-627 
504 |a Paranagama, P.A., Wijeratne, E.M.K., Gunatilaka, A.A.L., Uncovering Biosynthetic Potential of Plant-Associated Fungi: Effect of Culture Conditions on Metabolite Production by Paraphaeosphaeria quadriseptata and Chaetomium chiwersii (2007) J. Nat. Prod., 70, pp. 1939-1945 
504 |a Zutz, C., Gacek, A., Sulyok, M., Wagner, M., Strauss, J., Rychli, K., Small Chemical Chromatin Effectors Alter Secondary Metabolite Production in Aspergillus clavatus (2013) Toxins, 5, pp. 1723-1741 
504 |a Henrikson, J.C., Hoover, A.R., Joyner, P.M., Cichewicz, R.H., A Chemical Epigenetics Approach for Engineering the in situ Biosynthesis of a Cryptic Natural Product from Aspergillus niger (2009) Org. Biomol. Chem., 7, pp. 435-438 
504 |a Asai, T., Yamamoto, T., Oshima, Y., Histone Deacetylase Inhibitor Induced the Production of Three Novel Prenylated Tryptophan Analogs in the Entomopathogenic Fungus, Torrubiellaluteo rostrata (2011) Tetrahedron Lett., 52, pp. 7042-7045 
504 |a Furtado, N.A.J.C., Vessecchi, R., Tomaz, J.C., Galembeck, S.E., Bastos, J.K., Lopes, N.P., Crotti, A.E.M., Fragmentation of Diketopiperazines from Aspergillus fumigatus by Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) (2007) J. Mass Spectrom., 42, pp. 1279-1286 
504 |a Borthwick, A.D., 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products (2012) Chem. Rev., 112, pp. 3641-3716 
504 |a Wang, Q.-Z., Ge, H.-M., Zhang, J., Wu, J.-H., Song, Y.-C., Zhang, Y.-F., Tan, R.-X., Cochliones A – D, Four New Tetrahydrochromanone Derivatives from Endophytic Cochliobolus sp (2010) J. Asian Nat. Prod. Res., 12, pp. 485-491 
504 |a Renaud, J.-M., Tsoupras, G., Stoeckli-Evans, H., Tabacchi, R., A Novel Allenicepoxycyclohexane and Related Compounds from Eutypa lata (Pers: F.) Tul (1989) Helv. Chim. Acta, 72, pp. 1262-1267 
504 |a Klaiklay, S., Rukachaisirikul, V., Tadpetch, K., Sukpondma, Y., Phongpaichit, S., Buatong, J., Sakayaroj, J., Chlorinated Chromone and Diphenyl Ether Derivatives from the Mangrove-derived Fungus Pestalotiopsis sp. PSU-MA69 (2012) Tetrahedron, 68, pp. 2299-2305 
504 |a Mühlenfeld, A., Achenbacht, H., Asperpentyn, a Novel Acetylenic Cyclohexene Epoxide from Aspergillus duricaulis (1988) Phytochemistry, 27, pp. 3853-3855 
504 |a Rukachaisirikul, V., Rungsaiwattana, N., Klaiklay, S., Phongpaichit, S., Borwornwiriyapan, K., Sakayaroj, J., γButyrolactone, Cytochalasin, Cyclic Carbonate, Eutypinic Acid, and Phenalenone Derivatives from the Soil Fungus Aspergillus sp. PSURSPG185 (2014) J. Nat. Prod., 77, pp. 2375-2382 
504 |a Smetanina, O.F., Yurchenko, A.N., Kalinovskii, A.I., Khudyakova, Y.V., Kirichuk, N.N., Pivkin, M.V., Afiyatullov, S., Mikhailov, V.V., (−)-Asperpentyn from the Facultative Marine Fungus Curvularia inaequalis (2014) Chem. Nat. Compd., 50, pp. 1120-1121 
504 |a Li, J., Park, S., Miller, R.L., Lee, D., Tandem Enyne Metathesis-Metallotropic [1,3]-Shift for a Concise Total Syntheses of (+)-Asperpentyn, (−)-Harveynone, and (−)-Tricholomenyn A (2009) Org. Lett., 11, pp. 571-574 
504 |a Mehta, G., Roy, S., Pan, S.C., Enantioselective Syntheses of Bioactive Epoxyquinone Natural Products (+)-Harveynone and (−)-Asperpentyn (2012) Tetrahedron Lett., 53, pp. 4093-4095 
504 |a Nagata, T., Ando, Y., Hirota, A., Phytotoxins from Tea Gray Blight Fungi, Pestalotiopsis longiseta and Pestalotiopsis theae (1992) Biosci. Biotech. Biochem., 56, pp. 810-811 
504 |a Pinault, M., Frangin, Y., Genet, J.-P., Zamarlik, H., Total Synthesis of Siccayne (1990) Synthesis, 10, pp. 935-937 
504 |a Kupka, J., Anke, T., Steglich, W., Zechlin, L., Antibiotics from Basidiomycetes. XI. The Biological Activity of Siccayne, Isolated from the Marine Fungus Halocyphinavillosa J. & E. Kohlmeyer (1981) J. Antibiot., 34, pp. 298-304 
504 |a Frank, S., Geyer, H., Geyer, R., Microscale Analysis of Glycosphingolipids from Schistosomamansoni cercariae (2011) J. Carbohydr. Chem., 30, pp. 233-248 
504 |a Merrill, A.H., Jr., Sandhoff, K., (2002) Biochemistry of Lipids, Lipoproteins and Membranes, 36, p. 373. , ’, Eds., D. E. Vance, J. E. Vance, Elsevier Science B.V, Amsterdam, p 
504 |a Obeid, L.M., Okamoto, Y., Mao, C., Yeast Sphingolipids: Metabolism and Biology (2002) Biochim. Biophys. Acta, 1585, pp. 163-171 
504 |a Castelvetri, L.C., Givogri, M.I., Hebert, A., Smith, B., Song, Y., Kaminska, A., Lopez-Rosas, A., Bongarzone, E.R., The Sphingolipid Psychosine Inhibits Fast Axonal Transport in Krabbe Disease by Activation of GSK3β and Deregulation of Molecular Motors (2013) J. Neurosci., 33, pp. 10048-10056 
504 |a Colacios, C., Sabourdy, F., Andrieu-Abadie, N., Ségui, B., Levade, T., (2015) Bioactive Sphingolipids in Cancer Biology and Therapy, , Springer International Publishing, Switzerland 
504 |a Ramamoorthy, V., Cahoon, E.B., Thokala, M., Kaur, J., Li, J., Shah, D.M., Sphingolipid C-9 Methyltransferases are Important for Growth and Virulence but not for Sensitivity to Antifungal Plant Defensins in Fusarium graminearum (2009) Eukaryot. Cell, 8, pp. 217-229 
504 |a Ishihara, K., Kawaguchi, T., Matsuya, Y., Sakurai, H., Saiki, I., Nemoto, H., Synthesis and Biological Evaluation of Macrosphelide Cores (2004) Eur. J. Org. Chem., pp. 3973-3978 
504 |a Takamatsu, S., Kim, Y.-P., Hayashi, M., Hiraoka, H., Natori, M., Komiyama, K., Omura, S., Macrosphelide, a Novel Inhibitor of Cell-Cell Adhesion Molecule. II. Physicochemical Properties and Structural Elucidation (1995) J. Antibiot., 49, pp. 95-98 
504 |a Häcker, C., Plietker, B., General Stereodivergent Enantioselective Total Synthetic Approach toward Macrosphelides A-G and M (2015) J. Org. Chem., 80, pp. 8055-8064 
504 |a Paek, S.-M., Development of Advanced Macrosphelides: Potent Anticancer Agents (2015) Molecules, 20, pp. 4430-4449 
504 |a Hanson, J.R., (2008) The Chemistry of Fungi, , RSC Publishing, Cambridge 
504 |a Park, S.H., Stierle, A., Strobel, G.A., Metabolism of Maculosin, a Host-Specific Phytotoxin Produced by Alternaria alternata on Spotted Knapweed (Centaurea maculosa) (1993) Phytochemistry, 35, pp. 101-106 
504 |a Heringdorf, D.M., Jakobs, K.H., Lysophospholipid Receptors: Signalling, Pharmacology and Regulation by Lysophospholipid Metabolism (2007) Biochim. Biophys. Acta, 1768, pp. 923-940 
504 |a Gediya, L.K., Chopra, P., Purushottamachar, P., Maheshwari, N., Njar, V.C.O., A New Simple and High-Yield Synthesis of Suberoylanilide Hydroxamic Acid and its Inhibitory Effect Alone or in Combination with Retinoids on Proliferation of Human Prostate Cancer Cells (2005) J. Med. Chem., 48, pp. 5047-5051 
504 |a Silvani, V.A., Fracchia, S., Fernández, L., Pérgola, M., Godeas, A., A Simple Method to Obtain Endophytic Microorganisms from Field-Collected Roots (2008) Soil Biol. Biochem., 40, pp. 1259-1263 
504 |a Homans, A.L., Fuchs, A., Direct Bioautography on Thin-Layer Chromatography as a Method for Detecting Fungitoxic Substances (1970) J. Chromatogr., 51, pp. 325-328 
504 |a Brewster, J.H., A Useful Model of Optical Activity. I. Open Chain Compounds (1959) J. Am. Chem. Soc., 81, pp. 5475-5483 
504 |a Wang, T., Hao, X.-Q., Huang, J.-J., Niu, J.-L., Gong, J.-F., Song, M.-P., Chiral Bis(imidazolinyl)phenyl NCN Pincer Rhodium(III) Catalysts for Enantioselective Allylation of Aldehydes and Carbonyl–Ene Reaction of Trifluoropyruvates (2013) J. Org. Chem., 78, pp. 8712-8721 
504 |a Zhao, S., Zhang, X., Zhang, Y., Yang, H., Huang, Y., Zhang, K., Du, T., A Ce(OTf)3/PyBox Catalyzed Enantioselective Hosomi–Sakurai Reaction of Aldehydes with Allyltrimethylsilane (2015) New J. Chem., 39, pp. 7734-7737 
520 3 |a Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) Drechslera sp., isolated from the roots of rye grass (Lollium sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilidehydroxamic acid (SAHA) and other histone deacetylase inhibitors as epigenetic modifiers in the culture medium was evaluated by LC/MS and LC/MS/MS. Several differences in the metabolite production were detected by means of supervised principal component analysis (PCA) of LC/MS data. The presence of the compounds in the culture medium or in the mycelium was compared. In order to confirm their structure, many of these natural products were isolated from a larger scale culture. These metabolites were characterized as prenylhydroxybenzoic acids and chromans, two compounds, one of each class were previously undescribed, prenylquinoids, diketopiperazines and macrosphelides. Some of the compounds, which were released to the medium, showed good antifungal activity, suggesting that these compounds could protect Lollium from fungal phytopatogens. The use of SAHA as an additive of the cultures also induced the release of hexosylphytosphyngosine to the culture medium. The biotransformation of the inhibitors was observed in addition to the production of antifungal metabolites, showing the ability of this endophytic strain to control xenobiotics. © 2018 Wiley-VHCA AG, Zurich, Switzerland  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2008-1394 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 100516 
536 |a Detalles de la financiación: and 100352), CONICET (PIP 100516) and ANPCyT (PICT 2008-1394) for partial financial support. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina 
690 1 0 |a ASPERPENTYN 
690 1 0 |a DRECHSLERA 
690 1 0 |a LYSOSPHINGOLIPID 
690 1 0 |a MACROSPHELIDES 
690 1 0 |a SAHA 
690 1 0 |a ASPERPENTYN 
690 1 0 |a BENZOIC ACID DERIVATIVE 
690 1 0 |a CHROMAN DERIVATIVE 
690 1 0 |a HEXOSYLPHYTOSPHYNGOSINE 
690 1 0 |a HISTONE DEACETYLASE INHIBITOR 
690 1 0 |a MACROSPHELIDE 
690 1 0 |a NATURAL PRODUCT 
690 1 0 |a PIPERAZINEDIONE 
690 1 0 |a PRENYLHYDROXYBENZOIC ACID 
690 1 0 |a PRENYLQUINOID 
690 1 0 |a SPHINGOLIPID 
690 1 0 |a SPHINGOSINE DERIVATIVE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a VORINOSTAT 
690 1 0 |a XENOBIOTIC AGENT 
690 1 0 |a ANTIFUNGAL AGENT 
690 1 0 |a HISTONE DEACETYLASE 
690 1 0 |a HISTONE DEACETYLASE INHIBITOR 
690 1 0 |a ANTIFUNGAL ACTIVITY 
690 1 0 |a ARTICLE 
690 1 0 |a BIOTRANSFORMATION 
690 1 0 |a DRECHSLERA 
690 1 0 |a ENDOPHYTE 
690 1 0 |a EPIGENETICS 
690 1 0 |a FUNGUS 
690 1 0 |a FUNGUS CULTURE 
690 1 0 |a LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 
690 1 0 |a LOLIUM 
690 1 0 |a METABOLITE 
690 1 0 |a MYCELIUM 
690 1 0 |a NONHUMAN 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a ASCOMYCETES 
690 1 0 |a CHEMISTRY 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ENDOPHYTE 
690 1 0 |a EVALUATION STUDY 
690 1 0 |a ISOLATION AND PURIFICATION 
690 1 0 |a LIQUID CHROMATOGRAPHY 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIAL SENSITIVITY TEST 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a TANDEM MASS SPECTROMETRY 
690 1 0 |a ANTIFUNGAL AGENTS 
690 1 0 |a ASCOMYCOTA 
690 1 0 |a CHROMATOGRAPHY, LIQUID 
690 1 0 |a ENDOPHYTES 
690 1 0 |a HISTONE DEACETYLASE INHIBITORS 
690 1 0 |a HISTONE DEACETYLASES 
690 1 0 |a MICROBIAL SENSITIVITY TESTS 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a TANDEM MASS SPECTROMETRY 
700 1 |a Gallardo, G.L. 
700 1 |a Rodriguez, M.A. 
700 1 |a Rincón, Y.A. 
700 1 |a Godeas, A.M. 
700 1 |a Cabrera, G.M. 
773 0 |d Wiley-VCH Verlag, 2018  |g v. 15  |k n. 8  |p Chem. Biodiversity  |x 16121872  |t Chemistry and Biodiversity 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050730831&doi=10.1002%2fcbdv.201800133&partnerID=40&md5=8932818613f0fd7184e14abbd299abc1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/cbdv.201800133  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16121872_v15_n8_p_Siless  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16121872_v15_n8_p_Siless  |y Registro en la Biblioteca Digital 
961 |a paper_16121872_v15_n8_p_Siless  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86067