Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion

The modulation of cell adhesion via biologically inspired materials plays a key role in the development of realistic platforms to envisage not only mechanistic descriptions of many physiological and pathological processes but also new biointerfacial designs compatible with the requirements of biomed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Muzzio, N.E
Otros Autores: Pasquale, Miguel Angel, Marmisollé, W.A, Von Bilderling, C., Cortez, M.L, Pietrasanta, L.I, Azzaroni, O.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Royal Society of Chemistry 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 21742caa a22023537a 4500
001 PAPER-25116
003 AR-BaUEN
005 20250808122403.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85050766092 
024 7 |2 cas  |a phosphate, 14066-19-4, 14265-44-2; Biocompatible Materials; Macromolecular Substances; Phosphates; Polyamines 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Muzzio, N.E. 
245 1 0 |a Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion 
260 |b Royal Society of Chemistry  |c 2018 
270 1 0 |m Azzaroni, O.; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4 Casilla de Correo 16, Argentina; email: azzaroni@inifta.unlp.edu.ar 
504 |a Monge, C., Almodóvar, J., Boudou, T., Picart, C., Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D (2015) Adv. Healthcare Mater., 4, p. 811 
504 |a Murphy, N.P., Lampe, K.J., Mimicking Biological Phenomena in Hydrogel-based Biomaterials to Promote Dynamic Cellular Responses (2015) J. Mater. Chem. B, 3, p. 7867 
504 |a Sciari, B.M., Londono, R., Badylak, S.F., Strategies for Skeletal Muscle Tissue Engineering: Seed vs. Soil (2015) J. Mater. Chem. B, 3, p. 7881 
504 |a Bačáková, L., Filová, E., Rypáček, F., Švorčík, V., Starý, V., Cell Adhesion on Artificial Materials for Tissue Engineering (2004) Phys. Res., 53, p. S35 
504 |a Williams, D.F., Biocompatibility Pathways: Biomaterials-Induced Stimuli Inflammation, Mechanotrasduction, and Principles of Biocompatibility Control (2017) ACS Biomater. Sci. Eng., 3, p. 2 
504 |a Mih, J.D., Marinkovic, A., Liu, F., Sharif, A.S., Tschumperlin, D.J., Matrix stiffness reverses the effect of actomyosin tension on cell proliferation (2015) J. Cell Sci., 125, p. 5974 
504 |a Rianna, C., Radmacher, M., Influence of Microenvironment Topography and Stiffness on the Mechanics and Motility of Normal and Cancer Renal Cells (2017) Nanoscale, 9, p. 11222 
504 |a Buxboim, A., Ivanovska, I.L., Discher, D.E., Matrix Elasticity, Cytoskeletal Forces and Physics of the Nucleus: How Deeply do Cells 'Feel' Outside and in? (2010) J. Cell Sci., 123, p. 297 
504 |a Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Weaver, V.M., Tensional Homeostasis and the Malignant Phenotype (2005) Cancer Cell, 8, p. 241 
504 |a Chang, H., Zhang, H., Hu, M., Chen, X.-Ch., Ren, K.-F., Wanga, J.-L., Ji, J., Surface Modulation of Complex Stiffness via layer-by-layer Assembly as a Facile Strategy for Selective Cell Adhesion (2015) Biomater. Sci., 3, p. 352 
504 |a Mehrotra, S., Hunley, S.C., Pawelec, K.M., Zhang, L., Lee, I., Baek, S., Chan, C., Cell Adhesive Behavior on Thin Polyelectrolyte Multilayers: Cells Attempt to Achieve Homeostasis of Its Adhesion Energy (2010) Langmuir, 26, p. 12794 
504 |a Bačáková, L., Filová, E., Parizek, M., Ruml, T., Švorčík, V., Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants (2011) Biotechnol. Adv., 29, p. 739 
504 |a Anselme, K., Ploux, L., Ponche, A., Cell/Material Interfaces: Influence of Surface Chemistry and Surface Topography on Cell Adhesion (2010) J. Adhes. Sci. Technol., 24, p. 831 
504 |a Engler, A., Bačáková, L., Newman, C., Hategan, A., Griffin, M., Discher, D., Substrate Compliance Versus Ligand Density in Cell on Gel Responses (2004) Biophys. J., 86, p. 617 
504 |a Kharkar, P.M., Kiick, K.L., Kloxin, A.M., Designing Degradable Hydrogels for Orthogonal Control of Cell Microenvironments (2013) Chem. Soc. Rev., 42, p. 7335 
504 |a Saxena, Sh., Spears, M.W., Jr., Yoshida, H., Gaulding, J.C., García, A.J., Lyon, A., Microgel Film Dynamics Modulate Cell Adhesion Behavior (2014) Soft Matter, 10, p. 1356 
504 |a Ariga, K., (2012) Manipulation of Nanoscale Materials: An Introduction to Nanoarchitectonics, , ed., Royal Society of Chemistry, Cambridge,. 10.1039/9781849735124 
504 |a Wang, H., Zhang, D.-W., Li, Z.-T., (2015) Hydrogen Bonded Supramolecular Materials, Lectures in Chemistry, p. 185. , ed. Z.-T. Li and L.-Z. Wu, Springer-Verlag, Berlin Heidelberg, p. 10.1007/978-3-662-45780-1-6 
504 |a Simon, J., Bassoul, P., (2000) Design of Molecular Materials: Supramolecular Engineering, , John Wiley & Sons, Chichester,. ISBN 0-471-97371-8 
504 |a Ye, Q., Zhou, F., Liu, W., Bioinspired Catecholic Chemistry for Surface Modification (2011) Chem. Soc. Rev., 40, p. 4244 
504 |a Sedó, J., Saiz-Poseu, J., Busqué, F., Ruiz-Molina, D., (2013) Adv. Mater., 25, p. 653 
504 |a Lee, B.P., Messersmith, P.B., Israelachvili, J.N., Waite, J.H., (2011) Annu. Rev. Mater. Res., 41, p. 99 
504 |a Liu, Y., Ai, K., Lu, L., Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields (2014) Chem. Rev., 114, p. 5057 
504 |a Han, L., Lu, X., Liu, K., Wang, K., Fang, L., Weng, L.-T., Zhang, H., Li, Z., Mussel-Inspired Adhesive and Tough Hydrogel Based Nanoclay Confined Dopamine Polymerization (2017) ACS Nano, 11, p. 2561 
504 |a Marmisollé, W.A., Irigoyen, J., Gregurec, D., Moya, S., Azzaroni, O., Supramolecular Surface Chemistry: Substrate-Independent, Phosphate-Driven Growth of Polyamine-Based Multifunctional Thin Films (2015) Adv. Funct. Mater., 25, p. 4144 
504 |a D'Agostino, L., Di Luccia, A., Polyamines Interact with DNA as Molecular Aggregates (2002) Eur. J. Biochem., 269, p. 4317 
504 |a D'Agostino, L., Di Pietro, M., Di Luccia, A., Nuclear Aggregates of Polyamines are Supramolecular Structures that Play a Crucial Role in Genomic DNA Protection and Conformation (2005) FEBS J., 272, p. 3777 
504 |a Kröger, N., Deutzman, R., Bergsdorf, C., Sumper, M., Species-specific Polyamines from Diatoms Control Silica Morphology (2000) Proc. Natl. Acad. Sci. U. S. A., 97, p. 14133 
504 |a Cicco, S.R., Vona, D., Gristina, R., Sardella, E., Ragni, R., Lo Presti, M., Farinola, G.M., Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells (2016) Bioengineering, 3, p. 35 
504 |a Lutz, K., Gröger, C., Sumper, M., Brunner, E., Biomimetic Silica Formation: Analysis of the Phosphate-induced Self-assembly of Polyamines (2005) Phys. Chem. Chem. Phys., 7, p. 2812 
504 |a Sumper, M., Kröger, N., Silica Formation in Diatoms: The Function of Long-chain Polyamines and Silaffins (2004) J. Mater. Chem., 14, p. 2059 
504 |a Brunner, E., Lutz, K., Sumper, M., Biomimetic Synthesis of Silica Nanospheres Depends on the Aggregation and Phase Separation of Polyamines in Aqueous Solution (2004) Phys. Chem. Chem. Phys., 6, p. 854 
504 |a Huang, Y., Lawrence, P.G., Lapitsky, Y., Self-Assembly of Stiff, Adhesive and Self-Healing Gels from Common Polyelectrolytes (2014) Langmuir, 30, p. 7771 
504 |a Lawrence, P.G., Lapitsky, Y., Ionically Cross-linked Poly(allylamine) as a Stimulus-Responsive Underwater Adhesive: Ionic Strength and pH Effects (2015) Langmuir, 31, p. 1564 
504 |a Zhang, Y., Herling, M., Chenoweth, D.M., General Solution for Stabilizing Triple Helical Collagen (2016) J. Am. Chem. Soc., 138, p. 9751 
504 |a Lakra, R., Kiran, M.S., Usha, R., Mohan, R., Sundaresan, R., Korrapati, P.S., Enhanced Stabilization of Collagen by Furfural (2014) Int. J. Biol. Macromol., 65, p. 252 
504 |a Muzzio, N.E., Gregurec, D., Diamanti, E., Irigoyen, J., Pasquale, M.A., Azzaroni, O., Moya, S.E., Cell Adhesion: Thermal Annealing of Polyelectrolyte Multilayers: An Effective Approach for the Enhancement of Cell Adhesion (2017) Adv. Mater. Interfaces, 4, p. 1600126 
504 |a Hutter, J., Bechhoefer, J., Calibration of Atomic Force Microscope Tips (1993) Rev. Sci. Instrum., 64, p. 1868 
504 |a Lin, D.C., Dimitriadis, E.K., Horkay, F., Robust Strategies for Automated AFM Force Curve Analysis - II: Adhesion-Influenced Indentation of Soft, Elastic Materials (2007) J. Biomech. Eng., 129, p. 430 
504 |a Chizhik, S.A., Huang, Z., Gorbunov, V.V., Myshkin, N.K., Tsukruk, V.V., Micromechanical Properties of Elastic Polymeric Materials as Probed by Scanning Force Microscopy (1998) Langmuir, 14, p. 2606 
504 |a Shulha, H., Kovalev, A., Myshkin, N., Tsukruk, V.V., Some Aspects of AFM Nanomechanical Probing of Surface Polymer Films (2004) Eur. Polym. J., 40, p. 949 
504 |a Corbett, J.C.W., McNeil-Watson, F., Jack, R.O., Howarth, M., Measuring Surface zeta Potential Using Phase Analysis Light Scattering in a Simple Dip Cell Arrangement (2012) Colloids Surf., A, 396, p. 169 
504 |a Diamanti, E., Muzzio, N.E., Gregurec, D., Irigoyen, J., Pasquale, M.A., Azzaroni, O., Brinkmann, M., Moya, S.E., Impact of Thermal Annealing on Wettability and Antifouling Characteristics of Alginate Poly-l-Lysine Polyelectrolyte Multilayer Films (2017) Colloids Surf., B, 145, p. 328 
504 |a Muzzio, N.E., Pasquale, M.A., Diamanti, E., Gregurec, D., Martinez Moro, M., Azzaroni, O., Moya, S.E., Enhanced Antiadhesive Properties of Chitosan/Hyaluronic Acid Polyelectrolyte Multilayers Driven by Thermal Annealing: Low Adherence for Mammalian Cells and Selective Decrease in Adhesion for Gram-positive Bacteria (2017) Mater. Sci. Eng., C, 80, p. 677 
504 |a Muzzio, N.E., Pasquale, M.A., Moya, S.E., Azzaroni, O., Tailored Polyelectrolyte Thin Film Multilayers to Modulate Cell Adhesion (2017) Biointerphases, 12, p. 04E403 
504 |a Di Cio, S., Gautrot, J.E., Cell Sensing of Physical Properties at the Nanoscale: Mechanisms and control of Cell Adhesion and Phenotype (2016) Acta Biomater., 30, p. 26 
504 |a Tsukruk, V.V., Singamaneni, S., (2012) Scanning Probe Microscopy of Soft Matter: Fundamentals and Practices, , Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany 
504 |a Shimomura, S., Matsuno, H., Tanaka, K., Effect of Mechanical Instability of Polymer Scaffolds on Cell Adhesion (2013) Langmuir, 29, p. 11087 
504 |a Kuo, C.-H.R., Xian, J., Brenton, J.D., Franze, K., Sivaniah, E., Complex Stiffness Gradient Substrates for Studying Mechanotactic Cell Migration (2012) Adv. Mater., 24, p. 6059 
504 |a Maloney, J.M., Walton, E.B., Bruce, C.M., Van Vliet, K.J., Influence of Finite Thickness and Stiffness on Cellular Adhesion-induced Deformation of Compliant Substrata (2008) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 78, p. 041923 
504 |a Sen, S., Engler, A.J., Discher, D.E., Matrix Strains Induced by Cells: Computing How Far Cells can Feel (2009) Cell. Mol. Bioeng., 2, p. 39 
504 |a Buxboim, A., Rajagopal, K., Brown, A.E., Discher, D.E., How Deeply Cells Feel: Methods for Thin Gels (2010) J. Phys.: Condens. Matter, 22, p. 194116 
504 |a Chen, W.T., Computation of Stresses and Displacements in a Layered Elastic Medium (1971) Int. J. Eng. Sci., 9, p. 775 
504 |a Kabalnov, A., Ostwald Ripening and Related Phenomena (2001) J. Dispersion Sci. Technol., 22, p. 1 
504 |a Solon, J., Levental, I., Sengupta, K., Georges, P.C., Janmey, P.A., Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates (2007) Biophys. J., 93, p. 4453 
504 |a Tee, S.Y., Fu, J., Chen, C.S., Janmey, P.A., Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness (2011) Biophys. J., 100, p. L25 
504 |a Schneider, A., Francius, G., Obeid, R., Schwinté, P., Hemmerlé, J., Frisch, B., Schaaf, P., Picart, C., Polyelectrolyte Multilayers with a Tunable Young's Modulus: Influence of Film Stiffness on Cell Adhesion (2006) Langmuir, 22, p. 1193 
504 |a Alexander, M.R., Williams, P., Water Contact Angle is not a Good Predictor of Biological Responses to Materials (2017) Biointerphases, 12, p. 026201 
504 |a Arias, C.J., Surmaitis, R.L., Schelenoff, J.B., Cell Adhesion and Proliferation on the Living Surface of a Polyelectrolyte Multilayer (2016) Langmuir, 32, p. 5412 
504 |a Lord, M.S., Foss, M., Basenbacher, F., Influence of Nanoscale Surface Topography on Protein Adsorption and Cellular Response (2010) Nano Today, 5, p. 66 
504 |a Kakinoki, S., Seo, J.H., Inoue, Y., Ishihara, K., Yui, N., Yamaoka, T.A., A Large Mobility of Hydrophilic Molecules at the Outmost Layer Controls the Protein Adsorption and Adhering Behavior with the Actin Fiber Orientation of Human Umbilical Vein Endothelial Cells (HUVEC) (2013) J. Biomater. Sci., Polym. Ed., 24, p. 1320 
504 |a Arima, Y., Iwata, H., Preferential Adsorption of Cell Adhesive Proteins from Complex media on self-assembled monolayers and its effect on Subsequent Cell Adhesion (2015) Acta Biomater., 26, p. 72 
504 |a Nolte, A.J., Treat, N.D., Cohen, R.E., Rubner, M.E., Effect of Relative Humidity on the Young's modulus of Polyelectrolyte Multilayer Films and Related Nonionic Polymers (2008) Macromolecules, 41, p. 5793 
504 |a Shah, M.K., García-Pak, I.H., Darling, E.M., Influence of Inherent Mechanophenotype on Competitive Cellular Adherence (2017) Ann. Biomed. Eng., 45, p. 2036 
504 |a Kerch, G., Polymer Hydration and Stiffness at Biointerfaces and Related Cellular Processes (2018) Nanomedicine, 14, p. 13 
504 |a Grossutti, M., Dutcher, J.R., Correlation between Chain Architecture and Hydration Water Structure in Polysaccharides (2016) Biomacromolecules, 17, p. 1198 
504 |a Grossutti, M., Bergmann, E., Baylis, B., Dutcher, J.R., Equilibrium Swelling, Interstitial Forces, and Water Structuring in Phytoglycogen Nanoparticle Films (2017) Langmuir, 33, p. 2810 
504 |a Ball, P., Water as an Active Constituent in Cell Biology (2008) Chem. Rev., 108, p. 74 
504 |a Antia, M., Baneyx, G., Kubow, K.E., Vogel, V., Fibronectin in Aging Extracellular Matrix Fibrils is Progressively Unfolded by Cells and Elicits an Enhanced Rigidity Response (2008) Faraday Discuss., 139, p. 229 
504 |a Seo, J.H., Sakai, K., Yui, N., Adsorption State of Fibronectin on Poly(dimethylsiloxane) Surfaces with Varied Stiffness can Dominate Adhesion Density of Fibroblasts (2013) Acta Biomater., 9, p. 5493 
504 |a Ouberai, M.M., Xu, K., Welland, M.E., Effect of the Interplay between Protein and Surface on the Properties of Adsorbed Protein Layers (2014) Biomaterials, 35, p. 6157 
506 |2 openaire  |e Política editorial 
520 3 |a The modulation of cell adhesion via biologically inspired materials plays a key role in the development of realistic platforms to envisage not only mechanistic descriptions of many physiological and pathological processes but also new biointerfacial designs compatible with the requirements of biomedical devices. In this work, we show that the cell adhesion and proliferation of three different cell lines can be easily manipulated by using a novel biologically inspired supramolecular coating generated via dip coating of the working substrates in an aqueous solution of polyallylamine in the presence of phosphate anions - a simple one-step modification procedure. Our results reveal that selective cell adhesion can be controlled by varying the deposition time of the coating. Cell proliferation experiments showed a cell type-dependent quasi-exponential growth demonstrating the nontoxic properties of the supramolecular platform. After reaching a certain surface coverage, the supramolecular films based on phosphate-polyamine networks displayed antiadhesive activity towards cells, irrespective of the cell type. However and most interestingly, these antiadherent substrates developed strong adhesive properties after thermal annealing at 37 °C for 3 days. These results were interpreted based on the changes in the coating hydrophilicity, topography and stiffness, with the latter being assessed by atomic force microscopy imaging and indentation experiments. The reported approach is simple, robust and flexible, and would offer opportunities for the development of tunable, biocompatible interfacial architectures to control cell attachment for various biomedical applications. © 2018 The Royal Society of Chemistry.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-2010-2554, PICT-2013-0905 
536 |a Detalles de la financiación: Ashikaga Institute of Technology 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0602 
536 |a Detalles de la financiación: Austrian Institute of Technology 
536 |a Detalles de la financiación: This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) (Grant No. PIP 0602), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina; PICT-2010-2554, and PICT-2013-0905), the Austrian Institute of Technology GmbH (AIT–CONICET Partner Group: “Exploratory Research for Advanced Technologies in Supramolecular Materials Science”, Exp. 4947/11, Res. No. 3911, 28-12-2011), and Universidad Nacional de La Plata (UNLP). M. A. P., W. A. M., C. vB., M. L. C., L. I. P. and O. A. are staff members of CONICET. 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4 Casilla de Correo 16, La Plata, 1900, Argentina 
593 |a Instituto de Física de Buenos Aires (IFIBA UBA-CONICET), Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a ATOMIC FORCE MICROSCOPY 
690 1 0 |a BIOCOMPATIBILITY 
690 1 0 |a CELL ADHESION 
690 1 0 |a CELL CULTURE 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a COATINGS 
690 1 0 |a MEDICAL APPLICATIONS 
690 1 0 |a SOLUTIONS 
690 1 0 |a SUPRAMOLECULAR CHEMISTRY 
690 1 0 |a ANTI-ADHESIVE ACTIVITY 
690 1 0 |a BIOLOGICALLY INSPIRED 
690 1 0 |a BIOLOGICALLY INSPIRED MATERIAL 
690 1 0 |a BIOMEDICAL APPLICATIONS 
690 1 0 |a INDENTATION EXPERIMENT 
690 1 0 |a INTERFACIAL ARCHITECTURE 
690 1 0 |a PATHOLOGICAL PROCESS 
690 1 0 |a SUPRAMOLECULAR FILMS 
690 1 0 |a CELLS 
690 1 0 |a BIOCOMPATIBLE COATED MATERIAL 
690 1 0 |a BIOMIMETIC MATERIAL 
690 1 0 |a PHOSPHATE 
690 1 0 |a POLYAMINE 
690 1 0 |a BIOMATERIAL 
690 1 0 |a PHOSPHATE 
690 1 0 |a POLYAMINE 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a ATOMIC FORCE MICROSCOPY 
690 1 0 |a BIOMIMETICS 
690 1 0 |a C2C12 CELL LINE 
690 1 0 |a CELL ADHESION 
690 1 0 |a CELL INTERACTION 
690 1 0 |a CELL NUCLEUS 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CHEMICAL MODIFICATION 
690 1 0 |a CONTACT ANGLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOSKELETON 
690 1 0 |a EPITHELIAL CELL LINE 
690 1 0 |a FEMALE 
690 1 0 |a FOCAL ADHESION 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a LIMIT OF QUANTITATION 
690 1 0 |a MC3T3 CELL LINE 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a QUARTZ CRYSTAL MICROBALANCE 
690 1 0 |a RIGIDITY 
690 1 0 |a SUPRAMOLECULAR CHEMISTRY 
690 1 0 |a SURFACE PROPERTY 
690 1 0 |a THICKNESS 
690 1 0 |a TOPOGRAPHY 
690 1 0 |a 3T3 CELL LINE 
690 1 0 |a ABSORPTION 
690 1 0 |a ANIMAL 
690 1 0 |a CELL ADHESION 
690 1 0 |a CELL CULTURE 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CHEMISTRY 
690 1 0 |a HELA CELL LINE 
690 1 0 |a KINETICS 
690 1 0 |a MACROMOLECULE 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a SYNTHESIS 
690 1 0 |a WETTABILITY 
690 1 0 |a 3T3 CELLS 
690 1 0 |a ABSORPTION, PHYSIOLOGICAL 
690 1 0 |a ANIMALS 
690 1 0 |a BIOCOMPATIBLE MATERIALS 
690 1 0 |a CELL ADHESION 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a CELLS, CULTURED 
690 1 0 |a HELA CELLS 
690 1 0 |a HUMANS 
690 1 0 |a KINETICS 
690 1 0 |a MACROMOLECULAR SUBSTANCES 
690 1 0 |a MICE 
690 1 0 |a MICROSCOPY, ATOMIC FORCE 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a PHOSPHATES 
690 1 0 |a POLYAMINES 
690 1 0 |a WETTABILITY 
700 1 |a Pasquale, Miguel Angel 
700 1 |a Marmisollé, W.A. 
700 1 |a Von Bilderling, C. 
700 1 |a Cortez, M.L. 
700 1 |a Pietrasanta, L.I. 
700 1 |a Azzaroni, O. 
773 0 |d Royal Society of Chemistry, 2018  |g v. 6  |h pp. 2230-2247  |k n. 8  |p Biomater. Sci.  |x 20474830  |t Biomaterials Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050766092&doi=10.1039%2fc8bm00265g&partnerID=40&md5=3d10d57be5080ca1f698634fbe8b66cc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c8bm00265g  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20474830_v6_n8_p2230_Muzzio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20474830_v6_n8_p2230_Muzzio  |y Registro en la Biblioteca Digital 
961 |a paper_20474830_v6_n8_p2230_Muzzio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86069