Toward biomedical application of amino-functionalized silicon nanoparticles
Silicon blue-emitting nanoparticles (NPs) are promising effectors for photodynamic therapy and radiotherapy, because of their production of reactive oxygen species (ROS) upon irradiation. Results: Amino-functionalized silicon NPs (NH2SiNP) were intrinsically nontoxic below 100 μg/ml in vitro (on two...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , , , , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Future Medicine Ltd.
2018
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 19230caa a22019697a 4500 | ||
---|---|---|---|
001 | PAPER-25198 | ||
003 | AR-BaUEN | ||
005 | 20250827082446.0 | ||
008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85049148233 | |
024 | 7 | |2 cas |a silicon, 7440-21-3; Liposomes; Photosensitizing Agents; Reactive Oxygen Species; Silicon | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Lillo, C.R. | |
245 | 1 | 0 | |a Toward biomedical application of amino-functionalized silicon nanoparticles |
260 | |b Future Medicine Ltd. |c 2018 | ||
270 | 1 | 0 | |m Montanari, J.; Laboratorio de Biomembranas-GBEyB (IMBICE, CCT-La Plata, CONICET), Departamento de Ciencia y Tecnologiá, Universidad Nacional de QuilmesArgentina; email: jmontanari@unq.edu.ar |
504 | |a Llansola Portolés, M.J., Nieto, F.R., Soria, D.B., Photophysical properties of blue-emitting silicon nanoparticles (2009) J. Phys. Chem. C, 113, pp. 13694-13702 | ||
504 | |a Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Silicon nanoparticle photophysics and singlet oxygen generation (2010) Langmuir, 26 (13), pp. 10953-10960 | ||
504 | |a Romero, J.J., Llansola-Portolés, M.J., Dell'Arciprete, M.L., Rodríguez, H.B., Moore, A.L., Gonzalez, M.C., Photoluminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system (2013) Chem. Mater, 25 (17), pp. 3488-3498 | ||
504 | |a Santos, H.A., Mäkilä, E., Airaksinen, A.J., Bimbo, L.M., Hirvonen, J., Porous silicon nanoparticles for nanomedicine: Preparation and biomedical applications (2014) Nanomedicine (Lond, 9 (4), pp. 535-554 | ||
504 | |a Peng, F., Cao, Z., Ji, X., Chu, B., Su, Y., He, Y., Silicon nanostructures for cancer diagnosis and therapy (2015) Nanomedicine (Lond, 10 (13), pp. 2109-2123 | ||
504 | |a Larson, D.R., Water-soluble quantum dots for multiphoton fluorescence imaging in vivo (2003) Science, 300 (5624), pp. 1434-1436 | ||
504 | |a Gara, P.M.D., Garabano, N.I., Portoles, M.J.L., Ros enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma c6 cells (2012) J. Nanopart. Res, 14 (3), p. 741 | ||
504 | |a Morgan, N.Y., Kramer-Marek, G., Smith, P.D., Camphausen, K., Capala, J., Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: Calculation of required physical parameters (2009) Radiat. Res, 171 (2), pp. 236-244 | ||
504 | |a Juzenas, P., Chen, W., Sun, Y.P., Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer (2008) Adv. Drug Deliv. Rev, 60 (15), pp. 1600-1614 | ||
504 | |a Hu, W.-P., Kuo, K.-K., Senadi, G.C., Chang, L.-S., Wang, J.-J., Photodynamic therapy using indolines-fused-triazoles induces mitochondrial apoptosis in human non-melanoma bcc cells (2017) Anticancer Res, 37 (10), pp. 5499-5505 | ||
504 | |a Anand, S., Rollakanti, K.R., Brankov, N., Brash, D.E., Hasan, T., Maytin, E.V., Fluorouracil enhances photodynamic therapy of squamous cell carcinoma via a p53-independent mechanism that increases protoporphyrin IX levels and tumor cell death (2017) Mol. Cancer Ther, 16 (6), pp. 1092-1101 | ||
504 | |a Haas, M.L., Advances in radiation therapy for lung cancer (2008) Semin. Oncol. Nurs, 24 (1), pp. 34-40 | ||
504 | |a Griscelli, F., Li, H., Cheong, C., Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model (2000) Proc. Natl Acad. Sci. USA, 97 (12), pp. 6698-6703 | ||
504 | |a DeRosa, M.C., Crutchley, R.J., Photosensitized singlet oxygen and its applications (2002) Coord. Chem. Rev, 233-234, pp. 351-371 | ||
504 | |a Juarranz, A., Jaén, P., Sanz-Rodríguez, F., Cuevas, J., González, S., Photodynamic therapy of cancer. Basic principles and applications (2008) Clin. Transl. Oncol, 10 (3), pp. 148-154 | ||
504 | |a Montanari, J., Maidana, C., Esteva, M.I., Salomon, C., Morilla, M.J., Romero, E.L., Sunlight triggered photodynamic ultradeformable liposomes against leishmania braziliensis are also leishmanicidal in the dark (2010) J. Control Rel, 147 (3), pp. 368-376 | ||
504 | |a Hernández, I.P., Montanari, J., Valdivieso, W., Morilla, M.J., Romero, E.L., Escobar, P., In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against new world leishmania species (2012) J. Photochem. Photobiol. B Biol, 117, pp. 157-163 | ||
504 | |a Moan, J., Berg, K., The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen (1991) Photochem. Photobiol, 53 (4), pp. 549-553 | ||
504 | |a Schaefer, U., Loth, H., An ex vivo model for the study of drug penetration into human skin (1996) Pharmacol. Res, 13, p. 366 | ||
504 | |a Prausnitz, M.R., Langer, R., Transdermal drug delivery (2008) Nat. Biotechnol, 26 (11), pp. 1261-1268 | ||
504 | |a Cevc, G., Blume, G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force (1992) BBA-Biomembr, 1104 (1), pp. 226-232 | ||
504 | |a Jain, S., Patel, N., Shah, M.K., Khatri, P., Vora, N., Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application (2017) J. Pharm. Sci, 106 (2), pp. 423-445 | ||
504 | |a Honeywell-Nguyen, P.L., Groenink, H.W.W., De Graaff, A.M., Bouwstra, J.A., The in vivo transport of elastic vesicles into human skin: Effects of occlusion, volume and duration of application (2003) J. Control Rel, 90 (2), pp. 243-255 | ||
504 | |a Lee, K.Y., Jang, G.H., Byun, C.H., Jeun, M., Searson, P.C., Lee, K.H., Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: Promoting preclinical applications (2017) Biosci. Rep, 37 (3), pp. BSR20170199 | ||
504 | |a Lin, S., Lin, S., Zhao, Y., Nel, A.E., Zebrafish: An in vivo model for nano ehs studies (2013) Small, 9 (9-10), pp. 1608-1618 | ||
504 | |a Lillo, C.R., Romero, J.J., Portolés, M.L., Diez, R.P., Caregnato, P., Gonzalez, M.C., Organic coating of 1-2 nm-size silicon nanoparticles: Effect on particle properties (2015) Nano. Res, 8 (6), pp. 2047-2062 | ||
504 | |a Rosso-Vasic, M., Spruijt, E., Van Lagen, B., De Cola, L., Zuilhof, H., Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties (2008) Small, 4 (10), pp. 1835-1841 | ||
504 | |a Lakowicz, J.R., (2016) Principles of Fluorescence Spectroscopy, , Plenumpublishers NY USA | ||
504 | |a Landes, C.F., Link, S., Mohamed, M.B., Nikoobakht, B., El-Sayed, M.A., Some properties of spherical and rod-shaped semiconductor and metal nanocrystals (2002) Pure Appl. Chem, 74 (9), pp. 1675-1692 | ||
504 | |a Timasheff, S.N., Turbidity as a criterion of coagulation (1966) J. Colloid Interface Sci, 21, pp. 489-497 | ||
504 | |a Ragás, X., Jiménez-Banzo, A., Sánchez-Garciá, D., Batllori, X., Nonell, S., Singlet oxygen photosensitisation by the fluorescent probe singlet oxygen sensor green r (2009) Chem. Commun., 20, p. 2920 | ||
504 | |a Kim, S., Fujitsuka, M., Majima, T., Photochemistry of singlet oxygen sensor green (2013) J. Phys. Chem. B, 117 (45), pp. 13985-13992 | ||
504 | |a Rodríguez Sartori, D., Lillo, C.R., Romero, J.J., Polyethylene glycol-coated blue-emitting silicon dots with improved properties for uses in aqueous and biological environments (2016) Nanotechnology, 27 (47), pp. 1-11 | ||
504 | |a Hodgkinson, N., Kruger, C.A., Mokwena, M., Abrahamse, H., Cervical cancer cells (hela) response to photodynamic therapy using a zinc phthalocyanine photosensitizer (2017) J. Photochem. Photobiol. B Biol, 177, pp. 32-38 | ||
504 | |a Panzarini, E., Tenuzzo, B., Dini, L., Photodynamic therapy-induced apoptosis of hela cells (2009) Ann. NY Acad. Sci, 1171, pp. 617-626 | ||
504 | |a Bosio, G.N., Breitenbach, T., Parisi, J., Antioxidant β-carotene does not quench singlet oxygen in mammalian cells (2013) J. Am. Chem. Soc, 135 (1), pp. 272-279 | ||
504 | |a Aranda, A., Sequedo, L., Tolosa, L., Dichloro-dihydro-fluorescein diacetate (dcfh-da) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells (2013) Toxicol. Vitr, 27 (2), pp. 954-963 | ||
504 | |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem, 72 (1-2), pp. 248-254 | ||
504 | |a Bucci, P., Prieto, M.J., Milla, L., Skin penetration and uv-damage prevention by nanoberries (2017) J. Cosmet Dermatol, , (Epub ahead of print | ||
504 | |a Fry, D.W., White, J.C., Goldman, I.D., Rapid separation of low molecular weight solutes from liposomes without dilution (1978) Anal. Biochem, 90 (2), pp. 809-815 | ||
504 | |a Calienni, M.N., Temprana, C.F., Prieto, M.J., Nano-formulation for topical treatment of precancerous lesions: Skin penetration, in vitro, and in vivo toxicological evaluation (2018) Drug Deliv. Transl. Res, 8 (3), pp. 496-514 | ||
504 | |a Calienni, M.N., Feas, D.A., Igartuá, D.E., Chiaramoni, N.S., Alonso, S., Del, V., Prieto, M.J., Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages (2017) Toxicol. Appl. Pharmacol, 337, pp. 1-11 | ||
504 | |a Wahab, M.A., Kim, I., Ha, C.S., Bridged amine-functionalized mesoporous organosilica materials from 1,2-bis(triethoxysilyl)ethane and bis[(3-trimethoxysilyl)propyl]amine (2004) J. Solid State Chem, 177 (10), pp. 3439-3447 | ||
504 | |a Coates, J., Interpretation of infrared spectra, a practical approach (2000) Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, pp. 10815-10837. , Meyers RA (Ed.). John Wiley & Sons Ltd, Chichester, UK | ||
504 | |a Littau, A., Muller, A.J., A luminescent silicon nanocrystal colloid via a higherature aerosol reaction (1993) J. Phys. Chem, 97 (6), pp. 1224-1230 | ||
504 | |a Rogozhina, E.V., Eckhoff, D.A., Gratton, E., Braun, P.V., Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation (2006) J. Mater. Chem, 16 (15), p. 1421 | ||
504 | |a Getoff, N., Schwörer, F., Pulse radiolysis of ethyl, n-propyl, n-butyl and n-Amyl amine in aqueous solutions (1973) Int. J. Radiat. Phys. Chem, 5 (1), pp. 101-111 | ||
504 | |a Rao, P.S., Hayon, E., Oxidation of aromatic-Amines and diamines by oh radicals-formation and ionization-constants of amine cation radicals in water (1975) J. Phys. Chem, 79 (11), pp. 1063-1066 | ||
504 | |a Honeywell-Nguyen, P.L., De Graaff, A.M., Groenink, H.W., Bouwstra, J.A., The in vivo and in vitro interactions of elastic and rigid vesicles with human skin (2002) Biochim. Biophys. Acta, 1573 (2), pp. 130-140 | ||
504 | |a Linos, E., Li, W.Q., Han, J., Cho, E., Quereshi, A.A., Lifetime ultraviolet radiation exposure and lentigo maligna melanoma (2017) Br. J. Dermatol, 176, pp. 1666-1668 | ||
504 | |a Apalla, Z., Nashan, D., Weller, R.B., Castellsague, X., Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches (2017) Dermatol. Ther. (Heidelb, 7, pp. 5-19 | ||
504 | |a Teijeiro-Valinõ, C., Yebra-Pimentel, E., Guerra-Varela, J., Csaba, N., Alonso, M.J., Sánchez, L., Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model (2017) Nanomedicine (Lond, 12 (17), pp. 2069-2082 | ||
504 | |a Drapeau, P., Saint-Amant, L., Buss, R.R., Chong, M., McDearmid, J.R., Brustein, E., Development of the locomotor network in zebrafish (2002) Prog. Neurobiol, 68 (2), pp. 85-111 | ||
504 | |a De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R., De Groot, D., Zebrafish as potential model for developmental neurotoxicity testing. A mini review (2012) Neurotoxicol. Teratol, 34 (6), pp. 545-553 | ||
504 | |a He, J.H., Guo, S.Y., Zhu, F., A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity (2013) J. Pharmacol. Toxicol. Methods, 67 (1), pp. 25-32 | ||
504 | |a Selderslaghs, I.W.T., Hooyberghs, J., Blust, R., Witters, H.E., Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae (2013) Neurotoxicol. Teratol, 37, pp. 44-56 | ||
504 | |a King Heiden, T.C., Dengler, E., Kao, W.J., Heideman, W., Peterson, R.E., Developmental toxicity of low generation pamam dendrimers in zebrafish (2007) Toxicol. Appl. Pharmacol, 225 (1), pp. 70-79 | ||
504 | |a Martinez, C.S., Feas, D., Siri, M., Igartuá, D.E., Del Chiaramoni, S.V.A., Prieto, M.J., In vivo study of teratogenic and anticonvulsant effects of antiepileptics drugs in zebrafish embryo and larvae (2018) Neurotoxicol. Teratol, 66, pp. 17-24 | ||
504 | |a Fan, J.W., Vankayala, R., Chang, C.L., Chang, C.H., Chiang, C.S., Hwang, K.C., Preparation, cytotoxicity and in vivo bioimaging of highly luminescent water-soluble silicon quantum dots (2015) Nanotechnology, 26 (21), pp. 1-10 | ||
504 | |a Ye, H.-L., Cai, S.-J., Li, S., One-pot microwave synthesis of water-dispersible, high fluorescence silicon nanoparticles and their imaging applications in vitro and in vivo (2016) Anal. Chem, 88 (23), pp. 11631-11638 | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a Silicon blue-emitting nanoparticles (NPs) are promising effectors for photodynamic therapy and radiotherapy, because of their production of reactive oxygen species (ROS) upon irradiation. Results: Amino-functionalized silicon NPs (NH2SiNP) were intrinsically nontoxic below 100 μg/ml in vitro (on two tumor cell lines) and in vivo (zebrafish larvae and embryos). NH2SiNP showed a moderate effect as a photosensitizer for photodynamic therapy and reduced ROS generation in radiotherapy, which could be indicative of a ROS scavenging effect. Encapsulation of NH2SiNP into ultradeformable liposomes improved their skin penetration after topical application, reaching the viable epidermis where neoplastic events occur. Conclusion: Subsequent derivatizations after amino-functionalization and incorporation to nanodrug delivery systems could expand the spectrum of the biomedical application of these kind of silicon NPs. © 2018 Future Medicine Ltd. |l eng | |
536 | |a Detalles de la financiación: Universidad Nacional de Quilmes | ||
536 | |a Detalles de la financiación: Universidad de Buenos Aires | ||
536 | |a Detalles de la financiación: Consejo Interinstitucional de Ciencia y Tecnología | ||
536 | |a Detalles de la financiación: Universidad Nacional de La Plata | ||
536 | |a Detalles de la financiación: Universidad Nacional de San Juan | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
536 | |a Detalles de la financiación: 1Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, 1900 La Plata, Argentina 2Instituto de Nanosistemas (INS), Universidad Nacional de San Martin, 1650 San Martín, Argentina 3Laboratorio de Biomembranas – GBEyB (IMBICE, CCT-La Plata, CONICET), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, 1876 Bernal, Argentina 4CONICET – Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, 1428 Ciudad Autónoma de Buenos Aires, Argentina * Author for correspondence: jmontanari@unq.edu.ar ‡ Authors contributed equally | ||
593 | |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de la Plata, La Plata, 1900, Argentina | ||
593 | |a Instituto de Nanosistemas (INS), Universidad Nacional de San Martin, San-Martín, 1650, Argentina | ||
593 | |a Laboratorio de Biomembranas-GBEyB (IMBICE, CCT-La Plata, CONICET), Departamento de Ciencia y Tecnologiá, Universidad Nacional de Quilmes, Bernal, 1876, Argentina | ||
593 | |a CONICET-Universidad de Buenos Aires. Instituto de Quimica Biologica Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Ciudad Autónoma de Buenos Aires, 1428, Argentina | ||
690 | 1 | 0 | |a PDT |
690 | 1 | 0 | |a RADIOTHERAPY |
690 | 1 | 0 | |a SILICON NANOPARTICLES |
690 | 1 | 0 | |a SKIN PENETRATION |
690 | 1 | 0 | |a ULTRADEFORMABLE LIPOSOMES |
690 | 1 | 0 | |a ZEBRAFISH |
690 | 1 | 0 | |a AMINO FUNCTIONALIZED SILICON NANOPARTICLE |
690 | 1 | 0 | |a LIPOSOME |
690 | 1 | 0 | |a NANOPARTICLE |
690 | 1 | 0 | |a PHOTOSENSITIZING AGENT |
690 | 1 | 0 | |a REACTIVE OXYGEN METABOLITE |
690 | 1 | 0 | |a UNCLASSIFIED DRUG |
690 | 1 | 0 | |a LIPOSOME |
690 | 1 | 0 | |a NANOPARTICLE |
690 | 1 | 0 | |a PHOTOSENSITIZING AGENT |
690 | 1 | 0 | |a SILICON |
690 | 1 | 0 | |a ADULT |
690 | 1 | 0 | |a ANIMAL CELL |
690 | 1 | 0 | |a ARTICLE |
690 | 1 | 0 | |a CELL VIABILITY |
690 | 1 | 0 | |a CONTROLLED STUDY |
690 | 1 | 0 | |a CYTOTOXICITY |
690 | 1 | 0 | |a DRUG DELIVERY SYSTEM |
690 | 1 | 0 | |a EMBRYO |
690 | 1 | 0 | |a EPIDERMIS |
690 | 1 | 0 | |a FEMALE |
690 | 1 | 0 | |a HUMAN |
690 | 1 | 0 | |a HUMAN CELL |
690 | 1 | 0 | |a HUMAN TISSUE |
690 | 1 | 0 | |a IN VITRO STUDY |
690 | 1 | 0 | |a IN VIVO STUDY |
690 | 1 | 0 | |a INCUBATION TIME |
690 | 1 | 0 | |a NANOENCAPSULATION |
690 | 1 | 0 | |a NONHUMAN |
690 | 1 | 0 | |a PARTICLE SIZE |
690 | 1 | 0 | |a PHOTODYNAMIC THERAPY |
690 | 1 | 0 | |a PRIORITY JOURNAL |
690 | 1 | 0 | |a RADIOTHERAPY |
690 | 1 | 0 | |a RAT |
690 | 1 | 0 | |a SKIN PENETRATION |
690 | 1 | 0 | |a TUMOR CELL LINE |
690 | 1 | 0 | |a ZEBRA FISH |
690 | 1 | 0 | |a ANIMAL |
690 | 1 | 0 | |a CELL SURVIVAL |
690 | 1 | 0 | |a CHEMISTRY |
690 | 1 | 0 | |a DRUG DELIVERY SYSTEM |
690 | 1 | 0 | |a DRUG EFFECT |
690 | 1 | 0 | |a GROWTH, DEVELOPMENT AND AGING |
690 | 1 | 0 | |a METABOLISM |
690 | 1 | 0 | |a PHOTOCHEMOTHERAPY |
690 | 1 | 0 | |a ANIMALS |
690 | 1 | 0 | |a CELL SURVIVAL |
690 | 1 | 0 | |a DRUG DELIVERY SYSTEMS |
690 | 1 | 0 | |a HUMANS |
690 | 1 | 0 | |a LIPOSOMES |
690 | 1 | 0 | |a NANOPARTICLES |
690 | 1 | 0 | |a PHOTOCHEMOTHERAPY |
690 | 1 | 0 | |a PHOTOSENSITIZING AGENTS |
690 | 1 | 0 | |a REACTIVE OXYGEN SPECIES |
690 | 1 | 0 | |a SILICON |
690 | 1 | 0 | |a ZEBRAFISH |
700 | 1 | |a Natalia Calienni, M. | |
700 | 1 | |a Gorojod, R.M. | |
700 | 1 | |a Rivas Aiello, M.B. | |
700 | 1 | |a Rodriguez Sartori, D. | |
700 | 1 | |a Prieto, M.J. | |
700 | 1 | |a Alonso, S.D.V. | |
700 | 1 | |a Kotler, M.L. | |
700 | 1 | |a Gonzalez, M.C. | |
700 | 1 | |a Montanari, J. | |
773 | 0 | |d Future Medicine Ltd., 2018 |g v. 13 |h pp. 1349-1370 |k n. 11 |p Nanomedicine |x 17435889 |t Nanomedicine | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049148233&doi=10.2217%2fnnm-2018-0010&partnerID=40&md5=cbd60d39bee59cecf26c5c2a156ad225 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.2217/nnm-2018-0010 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_17435889_v13_n11_p1349_Lillo |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17435889_v13_n11_p1349_Lillo |y Registro en la Biblioteca Digital |
961 | |a paper_17435889_v13_n11_p1349_Lillo |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 86151 |