Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex

Methamphetamine (METH) and modafinil are psychostimulants with different long-term cognitive profiles: METH is addictive and leads to cognitive decline, whereas modafinil has little abuse liability and is a cognitive enhancer. Increasing evidence implicates epigenetic mechanisms of gene regulation b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González, B.
Otros Autores: Jayanthi, S., Gomez, N., Torres, O.V, Sosa, M.H, Bernardi, A., Urbano, F.J, García-Rill, E., Cadet, J.-L, Bisagno, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 25308caa a22022937a 4500
001 PAPER-25237
003 AR-BaUEN
005 20230518205715.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85038354526 
024 7 |2 cas  |a DNA, 9007-49-2; histone, 9062-68-4; methamphetamine, 28297-73-6, 51-57-0, 537-46-2, 7632-10-2; modafinil, 68693-11-8; Central Nervous System Stimulants; Histones; Methamphetamine; Modafinil 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PNPPD 
100 1 |a González, B. 
245 1 0 |a Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex 
260 |b Elsevier Inc.  |c 2018 
270 1 0 |m Bisagno, V.; Instituto de Investigaciones Farmacológicas, ININFA-UBA-CONICET, Junín 956, Piso 5, Argentina; email: vbisagno@ffyb.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Agricola, E., Verdone, L., Di Mauro, E., Caserta, M., H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes (2006) Mol. Microbiol., 62 (5), pp. 1433-1446 
504 |a Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., Zoghbi, H.Y., Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 (1999) Nat. Genet., 23 (2), pp. 185-188 
504 |a Anaclet, C., Parmentier, R., Ouk, K., Guidon, G., Buda, C., Sastre, J.P., Akaoka, H., Lin, J.S., Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models (2009) J. Neurosci., 29 (46), pp. 14423-14438 
504 |a Anier, K., Malinovskaja, K., Aonurm-Helm, A., Zharkovsky, A., Kalda, A., DNA methylation regulates cocaine-induced behavioral sensitization in mice (2010) Neuropsychopharmacology, 35 (12), pp. 2450-2461 
504 |a Bali, P., Im, H.I., Kenny, P.J., Methylation, memory and addiction (2011) Epigenetics, 6 (6), pp. 671-674 
504 |a Bernheim, A., See, R.E., Reichel, C.M., Chronic methamphetamine self-administration disrupts cortical control of cognition (2016) Neurosci. Biobehav. Rev., 69, pp. 36-48 
504 |a Bisagno, V., González, B., Urbano, F.J., Cognitive enhancers versus addictive psychostimulants: the good and bad side of dopamine on prefrontal cortical circuits (2016) Pharmacol. Res., 109, pp. 108-118 
504 |a Braren, S.H., Drapala, D., Tulloch, I.K., Serrano, P.A., Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors (2014) Front. Behav. Neurosci., 8, p. 438 
504 |a Cadet, J.L., Bisagno, V., The primacy of cognition in the manifestations of substance use disorders (2013) Front. Neurol., 4, p. 189 
504 |a Cadet, J.L., Brannock, C., Jayanthi, S., Krasnova, I.N., Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat (2015) Mol. Neurobiol., 51 (2), pp. 696-717 
504 |a Cepeda, C., Levine, M.S., Where do you think you are going? The NMDA-D1 receptor trap (2006) Sci. STKE, 2006 (333), p. pe20 
504 |a Chen, B.T., Yau, H.J., Hatch, C., Kusumoto-Yoshida, I., Cho, S.L., Hopf, F.W., Bonci, A., Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking (2013) Nature, 496 (7445), pp. 359-362 
504 |a Dai, H., Kaneko, K., Kato, H., Fujii, S., Jing, Y., Xu, A., Sakurai, E., Yanai, K., Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors (2007) Neurosci. Res., 57 (2), pp. 306-313 
504 |a Dudman, J.T., Eaton, M.E., Rajadhyaksha, A., Macías, W., Taher, M., Barczak, A., Kameyama, K., Konradi, C., Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1 (2003) J. Neurochem., 87 (4), pp. 922-934 
504 |a Estabrooke, I.V., McCarthy, M.T., Ko, E., Chou, T.C., Chemelli, R.M., Yanagisawa, M., Saper, C.B., Scammell, T.E., Fos expression in orexin neurons varies with behavioral state (2001) J. Neurosci., 21 (5), pp. 1656-1662 
504 |a Ferrucci, M., Giorgi, F.S., Bartalucci, A., Busceti, C.L., Fornai, F., The effects of locus coeruleus and norepinephrine in methamphetamine toxicity (2013) Curr. Neuropharmacol., 11 (1), pp. 80-94 
504 |a Gansen, A., Tóth, K., Schwarz, N., Langowski, J., Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—a FRET study (2015) Nucleic Acids Res., 43 (3), pp. 1433-1443 
504 |a Gao, C., Wolf, M.E., Dopamine receptors regulate NMDA receptor surface expression in prefrontal cortex neurons (2008) J. Neurochem., 106 (6), pp. 2489-2501 
504 |a Gentile, T.A., Simmons, S.J., Watson, M.N., Connelly, K.L., Brailoiu, E., Zhang, Y., Muschamp, J.W., Effects of suvorexant, a dual orexin/hypocretin receptor antagonist, on impulsive behavior associated with cocaine (2017) Neuropsychopharmacology 
504 |a González, B., Raineri, M., Cadet, J.L., García-Rill, E., Urbano, F.J., Bisagno, V., Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice (2014) Neuropharmacology, 87, pp. 188-197 
504 |a González, B., Rivero-Echeto, C., Muñiz, J.A., Cadet, J.L., García-Rill, E., Urbano, F.J., Bisagno, V., Methamphetamine blunts Ca(2 +) currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex (2016) Addict. Biol., 21 (3), pp. 589-602 
504 |a Gozen, O., Balkan, B., Yildirim, E., Koylu, E.O., Pogun, S., The epigenetic effect of nicotine on dopamine D1 receptor expression in rat prefrontal cortex (2013) Synapse, 67 (9), pp. 545-552 
504 |a Gozzi, A., Colavito, V., Seke Etet, P.F., Montanari, D., Fiorini, S., Tambalo, S., Bifone, A., Bentivoglio, M., Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat (2012) Neuropsychopharmacology, 37 (3), pp. 822-837 
504 |a Gräff, J., Tsai, L.H., Histone acetylation: molecular mnemonics on the chromatin (2013) Nat. Rev. Neurosci., 14 (2), pp. 97-111 
504 |a Heilig, M., Barbier, E., Johnstone, A.L., Tapocik, J., Meinhardt, M.W., Pfarr, S., Wahlestedt, C., Sommer, W.H., Reprogramming of mPFC transcriptome and function in alcohol dependence (2017) Genes Brain Behav., 16 (1), pp. 86-100 
504 |a Ishizuka, T., Murotani, T., Yamatodani, A., Modanifil activates the histaminergic system through the orexinergic neurons (2010) Neurosci. Lett., 483 (3), pp. 193-196 
504 |a Izquierdo, A., Belcher, A.M., Scott, L., Cazares, V.A., Chen, J., O'Dell, S.J., Malvaez, M., Marshall, J.F., Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine (2010) Neuropsychopharmacology, 35 (2), pp. 505-514 
504 |a Jayanthi, S., McCoy, M.T., Chen, B., Britt, J.P., Kourrich, S., Yau, H.J., Ladenheim, B., Cadet, J.L., Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms (2014) Biol. Psychiatry, 76 (1), pp. 47-56 
504 |a Jin, Q., LR, Y., Wang, L., Zhang, Z., Kasper, L.H., Lee, J.E., Wang, C., Ge, K., Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation (2011) EMBO J., 30 (2), pp. 249-262 
504 |a Kalechstein, A.D., De La Garza, R., II, Newton, T.F., Modafinil administration improves working memory in methamphetamine-dependent individuals who demonstrate baseline impairment (2010) Am. J. Addict., 19 (4), pp. 340-344 
504 |a Kamei, H., Nagai, T., Nakano, H., Togan, Y., Takayanagi, M., Takahashi, K., Kobayashi, K., Yamada, K., Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice (2006) Biol. Psychiatry, 59 (1), pp. 75-84 
504 |a Kauer, J.A., Malenka, R.C., Synaptic plasticity and addiction (2007) Nat. Rev. Neurosci., 8 (11), pp. 844-858 
504 |a Kennedy, P.J., Feng, J., Robison, A.J., Maze, I., Badimon, A., Mouzon, E., Chaudhury, D., Nestler, E.J., Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation (2013) Nat. Neurosci., 16 (4), pp. 434-440 
504 |a Knauber, J., Müller, W.E., Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the alpha(1b)-adrenoceptor (2000) Eur. Neuropsychopharmacol., 10 (6), pp. 423-427 
504 |a Kruse, M.S., Prémont, J., Krebs, M.O., Jay, T.M., Interaction of dopamine D1 with NMDA NR1 receptors in rat prefrontal cortex (2009) Eur. Neuropsychopharmacol., 19 (4), pp. 296-304 
504 |a Li, B., Carey, M., Workman, J.L., The role of chromatin during transcription (2007) Cell, 128 (4), pp. 707-719 
504 |a Li, H., Li, F., Wu, N., RB, S., Li, J., Methamphetamine induces dynamic changes of histone deacetylases in different phases of behavioral sensitization (2014) CNS Neurosci. Ther., 20 (9), pp. 874-876 
504 |a Madden, L.J., Flynn, C.T., Zandonatti, M.A., May, M., Parsons, L.H., Katner, S.N., Henriksen, S.J., Fox, H.S., Modeling human methamphetamine exposure in nonhuman primates: chronic dosing in the rhesus macaque leads to behavioral and physiological abnormalities (2005) Neuropsychopharmacology, 30 (2), pp. 350-359 
504 |a Mahler, S.V., Smith, R.J., Moorman, D.E., Sartor, G.C., Aston-Jones, G., Multiple roles for orexin/hypocretin in addiction (2012) Prog. Brain Res., 198, pp. 79-121 
504 |a Martin, T.A., Jayanthi, S., McCoy, M.T., Brannock, C., Ladenheim, B., Garrett, T., Lehrmann, E., Cadet, J.L., Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens (2012) PLoS One, 7 (3), p. e34236 
504 |a McGaugh, J., Mancino, M.J., Feldman, Z., Chopra, M.P., Gentry, W.B., Cargile, C., Oliveto, A., Open-label pilot study of modafinil for methamphetamine dependence (2009) J. Clin. Psychopharmacol., 29 (5), pp. 488-491 
504 |a Mereu, M., Bonci, A., Newman, A.H., Tanda, G., The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders (2013) Psychopharmacology, 229 (3), pp. 415-434 
504 |a Mieda, M., The roles of orexins in sleep/wake regulation (2017) Neurosci. Res., 118, pp. 56-65 
504 |a Moore, L.D., Le, T., Fan, G., DNA methylation and its basic function (2013) Neuropsychopharmacology, 38 (1), pp. 23-38 
504 |a Moretti, M., Valvassori, S.S., Varela, R.B., Ferreira, C.L., Rochi, N., Benedet, J., Scaini, G., Quevedo, J., Behavioral and neurochemical effects of sodium butyrate in an animal model of mania (2011) Behav. Pharmacol., 22 (8), pp. 766-772 
504 |a Morici, J.F., Bekinschtein, P., Weisstaub, N.V., Medial prefrontal cortex role in recognition memory in rodents (2015) Behav. Brain Res., 292, pp. 241-251 
504 |a Munzar, P., Tanda, G., Justinova, Z., Goldberg, S.R., Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release (2004) Neuropsychopharmacology, 29 (4), pp. 705-717 
504 |a Murnane, K.S., Perrine, S.A., Finton, B.J., Galloway, M.P., Howell, L.L., Fantegrossi, W.E., Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: correlations between behavior and neurochemistry (2012) Psychopharmacology, 220 (3), pp. 495-508 
504 |a Mychasiuk, R., Muhammad, A., Ilnytskyy, S., Kolb, B., Persistent gene expression changes in NAc, mPFC, and OFC associated with previous nicotine or amphetamine exposure (2013) Behav. Brain Res., 256, pp. 655-661 
504 |a Myrick, H., Malcolm, R., Taylor, B., LaRowe, S., Modafinil: preclinical, clinical, and post-marketing surveillance—a review of abuse liability issues (2004) Ann. Clin. Psychiatry, 16 (2), pp. 101-109 
504 |a Committee on guidelines for the use of animals in neuroscience and behavioral research (2003) Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research, , National Academies Press (US) Washington (DC) 
504 |a Nestler, E.J., Epigenetic mechanisms of drug addiction (2014) Neuropharmacology, 76, pp. 259-268 
504 |a Parsegian, A., See, R.E., Dysregulation of dopamine and glutamate release in the prefrontal cortex and nucleus accumbens following methamphetamine self-administration and during reinstatement in rats (2014) Neuropsychopharmacology, 39 (4), pp. 811-822 
504 |a Peixoto, L., Abel, T., The role of histone acetylation in memory formation and cognitive impairments (2013) Neuropsychopharmacology, 38 (1), pp. 62-76 
504 |a Rasetti, R., Mattay, V.S., Stankevich, B., Skjei, K., Blasi, G., Sambataro, F., Arrillaga-Romany, I.C., Weinberger, D.R., Modulatory effects of modafinil on neural circuits regulating emotion and cognition (2010) Neuropsychopharmacology, 35 (10), pp. 2101-2109 
504 |a Renthal, W., Kumar, A., Xiao, G., Wilkinson, M., Covington, H.E., III, Maze, I., Sikder, D., Nestler, E.J., Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins (2009) Neuron, 62 (3), pp. 335-348 
504 |a Robison, A.J., Nestler, E.J., Transcriptional and epigenetic mechanisms of addiction (2011) Nat. Rev. Neurosci., 12 (11), pp. 623-637 
504 |a Rogge, G.A., Wood, M.A., The role of histone acetylation in cocaine-induced neural plasticity and behavior (2013) Neuropsychopharmacology, 38 (1), pp. 94-110 
504 |a Romieu, P., Host, L., Gobaille, S., Sandner, G., Aunis, D., Zwiller, J., Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats (2008) J. Neurosci., 28 (38), pp. 9342-9348 
504 |a Sarantis, K., Matsokis, N., Angelatou, F., Synergistic interactions of dopamine D1 and glutamate NMDA receptors in rat hippocampus and prefrontal cortex: involvement of ERK1/2 signaling (2009) Neuroscience, 163 (4), pp. 1135-1145 
504 |a Stertz, L., Fries, G.R., Aguiar, B.W., Pfaffenseller, B., Valvassori, S.S., Gubert, C., Ferreira, C.L., Kauer-Sant'Anna, M., Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania (2014) Rev. Bras. Psiquiatr., 36 (1), pp. 39-46 
504 |a Stone, E.A., Cotecchia, S., Lin, Y., Quartermain, D., Role of brain alpha 1B-adrenoceptors in modafinil-induced behavioral activity (2002) Synapse, 46 (4), pp. 269-270 
504 |a Strahl, B.D., Allis, C.D., The language of covalent histone modifications (2000) Nature, 403 (6765), pp. 41-45 
504 |a Sulzer, D., Sonders, M.S., Poulsen, N.W., Galli, A., Mechanisms of neurotransmitter release by amphetamines: a review (2005) Prog. Neurobiol., 75 (6), pp. 406-433 
504 |a Torres-García, M.E., Medina, A.C., Quirarte, G.L., Prado-Alcalá, R.A., Differential effects of inactivation of discrete regions of medial prefrontal cortex on memory consolidation of moderate and intense inhibitory avoidance training (2017) Front. Pharmacol., 8, p. 842. , (Nov 17) 
504 |a Torres, O.V., McCoy, M.T., Ladenheim, B., Jayanthi, S., Brannock, C., Tulloch, I., Krasnova, I.N., Cadet, J.L., CAMKII-conditional deletion of histone deacetylase 2 potentiates acute methamphetamine-induced expression of immediate early genes in the mouse nucleus accumbens (2015) Sci. Rep., 5, p. 13396 
504 |a Torres, O.V., Ladenheim, B., Jayanthi, S., McCoy, M.T., Krasnova, I.N., Vautier, F.A., Cadet, J.L., An acute methamphetamine injection downregulates the expression of several histone deacetylases (HDACs) in the mouse nucleus accumbens: potential regulatory role of HDAC2 expression (2016) Neurotox. Res., 30 (1), pp. 32-40 
504 |a Wang, Z., Zang, C., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S., Cui, K., Zhao, K., Combinatorial patterns of histone acetylations and methylations in the human genome (2008) Nat. Genet., 40 (7), pp. 897-903 
504 |a Wang, Z., Zang, C., Cui, K., Schones, D.E., Barski, A., Peng, W., Zhao, K., Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes (2009) Cell, 138 (5), pp. 1019-1031 
504 |a Warburton, E.C., Brown, M.W., Findings from animals concerning when interactions between perirhinal cortex, hippocampus and medial prefrontal cortex are necessary for recognition memory (2010) Neuropsychologia, 48 (8), pp. 2262-2272 
504 |a Wirt, R.A., Hyman, J.M., Integrating spatial working memory and remote memory: interactions between the medial prefrontal cortex and hippocampus (2017) Brain Sci., 7 (4). , (Apr 18, pii: E43) 
504 |a Wisor, J., Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions (2013) Front. Neurol., 4, p. 139 
504 |a Wood, M.A., Attner, M.A., Oliveira, A.M., Brindle, P.K., Abel, T., A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes (2006) Learn. Mem., 13 (5), pp. 609-617 
504 |a Yan, C., Boyd, D.D., Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression (2006) Mol. Cell. Biol., 26 (17), pp. 6357-6371 
504 |a Yu, Q., Olsen, L., Zhang, X., Boeke, J.D., Bi, X., Differential contributions of histone H3 and H4 residues to heterochromatin structure (2011) Genetics, 188 (2), pp. 291-308 
504 |a Zentner, G.E., Henikoff, S., Regulation of nucleosome dynamics by histone modifications (2013) Nat. Struct. Mol. Biol., 20 (3), pp. 259-266 
504 |a Zlomuzica, A., Viggiano, D., De Souza Silva, M.A., Ishizuka, T., Gironi Carnevale, U.A., Ruocco, L.A., Watanabe, T., Dere, E., The histamine H1-receptor mediates the motivational effects of novelty (2008) Eur. J. Neurosci., 27 (6), pp. 1461-1474 
520 3 |a Methamphetamine (METH) and modafinil are psychostimulants with different long-term cognitive profiles: METH is addictive and leads to cognitive decline, whereas modafinil has little abuse liability and is a cognitive enhancer. Increasing evidence implicates epigenetic mechanisms of gene regulation behind the lasting changes that drugs of abuse and other psychotropic compounds induce in the brain, like the control of gene expression by histones 3 and 4 tails acetylation (H3ac and H4ac) and DNA cytosine methylation (5-mC). Mice were treated with a seven-day repeated METH, modafinil or vehicle protocol and evaluated in the novel object recognition (NOR) test or sacrificed 4 days after last injection for molecular assays. We evaluated total H3ac, H4ac and 5-mC levels in the medial prefrontal cortex (mPFC), H3ac and H4ac promotor enrichment (ChIP) and mRNA expression (RT-PCR) of neurotransmitter systems involved in arousal, wakefulness and cognitive control, like dopaminergic (Drd1 and Drd2), α-adrenergic (Adra1a and Adra1b), orexinergic (Hcrtr1 and Hcrtr2), histaminergic (Hrh1 and Hrh3) and glutamatergic (AMPA Gria1 and NMDA Grin1) receptors. Repeated METH and modafinil treatment elicited different cognitive outcomes in the NOR test, where modafinil-treated mice performed as controls and METH-treated mice showed impaired recognition memory. METH-treated mice also showed i) decreased levels of total H3ac and H4ac, and increased levels of 5-mC, ii) decreased H3ac enrichment at promoters of Drd2, Hcrtr1/2, Hrh1 and Grin1, and increased H4ac enrichment at Drd1, Hrh1 and Grin1, iii) increased mRNA of Drd1a, Grin1 and Gria1. Modafinil-treated mice shared none of these effects and showed increased H3ac enrichment and mRNA expression at Adra1b. Modafinil and METH showed similar effects linked to decreased H3ac in Hrh3, increased H4ac in Hcrtr1, and decreased mRNA expression of Hcrtr2. The specific METH-induced epigenetic and transcriptional changes described here may be related to the long-term cognitive decline effects of the drug and its detrimental effects on mPFC function. The lack of similar epigenetic effects of chronic modafinil administration supports this notion. © 2017 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: National Institutes of Health, P30 GM110702 
536 |a Detalles de la financiación: International Society for Neurochemistry 
536 |a Detalles de la financiación: University of Arkansas for Medical Sciences 
536 |a Detalles de la financiación: This work is supported by grants PICT 2012-0924, PICT 2012-1769, PICT 2014-2499 and PICT 2015-2549, Argentina. In addition, this work was supported by NIH award P30 GM110702 to the Center for Translational Neuroscience, UAMS, USA, and International Society for Neurochemistry CAEN1B grant. 
593 |a Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States 
593 |a Department of Behavioral Sciences, San Diego Mesa College, San Diego, CA, United States 
593 |a Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States 
690 1 0 |a COGNITION 
690 1 0 |a DNA METHYLATION 
690 1 0 |a HISTONE ACETYLATION 
690 1 0 |a METHAMPHETAMINE 
690 1 0 |a MODAFINIL 
690 1 0 |a PREFRONTAL CORTEX 
690 1 0 |a DNA 
690 1 0 |a HISTONE 
690 1 0 |a MESSENGER RNA 
690 1 0 |a METHAMPHETAMINE 
690 1 0 |a MODAFINIL 
690 1 0 |a NEUROTRANSMITTER 
690 1 0 |a CENTRAL STIMULANT AGENT 
690 1 0 |a HISTONE 
690 1 0 |a METHAMPHETAMINE 
690 1 0 |a MODAFINIL 
690 1 0 |a ADRA1A GENE 
690 1 0 |a ADRA1B GENE 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a AROUSAL 
690 1 0 |a ARTICLE 
690 1 0 |a COGNITION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DNA METHYLATION 
690 1 0 |a DRD1 GENE 
690 1 0 |a DRD2 GENE 
690 1 0 |a EPIGENETICS 
690 1 0 |a EXECUTIVE FUNCTION 
690 1 0 |a GENE 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENETIC TRANSCRIPTION 
690 1 0 |a GRIA1 GENE 
690 1 0 |a GRIN1 GENE 
690 1 0 |a HCRTR1 GENE 
690 1 0 |a HCRTR2 GENE 
690 1 0 |a HISTONE ACETYLATION 
690 1 0 |a HRH1 GENE 
690 1 0 |a HRH3 GENE 
690 1 0 |a LOCOMOTION 
690 1 0 |a MEDIAL PREFRONTAL CORTEX 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PROMOTER REGION 
690 1 0 |a RECOGNITION 
690 1 0 |a REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION 
690 1 0 |a WAKEFULNESS 
690 1 0 |a ACETYLATION 
690 1 0 |a ANIMAL 
690 1 0 |a C57BL MOUSE 
690 1 0 |a CHEMICALLY INDUCED 
690 1 0 |a COGNITION 
690 1 0 |a DNA METHYLATION 
690 1 0 |a DRUG EFFECT 
690 1 0 |a MALE 
690 1 0 |a MEMORY DISORDER 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PREFRONTAL CORTEX 
690 1 0 |a ACETYLATION 
690 1 0 |a ANIMALS 
690 1 0 |a CENTRAL NERVOUS SYSTEM STIMULANTS 
690 1 0 |a COGNITION 
690 1 0 |a DNA METHYLATION 
690 1 0 |a HISTONES 
690 1 0 |a MALE 
690 1 0 |a MEMORY DISORDERS 
690 1 0 |a METHAMPHETAMINE 
690 1 0 |a MICE, INBRED C57BL 
690 1 0 |a MODAFINIL 
690 1 0 |a PREFRONTAL CORTEX 
690 1 0 |a RECOGNITION (PSYCHOLOGY) 
700 1 |a Jayanthi, S. 
700 1 |a Gomez, N. 
700 1 |a Torres, O.V. 
700 1 |a Sosa, M.H. 
700 1 |a Bernardi, A. 
700 1 |a Urbano, F.J. 
700 1 |a García-Rill, E. 
700 1 |a Cadet, J.-L. 
700 1 |a Bisagno, V. 
773 0 |d Elsevier Inc., 2018  |g v. 82  |h pp. 1-11  |p Prog. Neuro-Psychopharmacol. Biol. Psychiatry  |x 02785846  |t Progress in Neuro-Psychopharmacology and Biological Psychiatry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038354526&doi=10.1016%2fj.pnpbp.2017.12.009&partnerID=40&md5=87d40f816e0264ac0ebadb9a9f71adf3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.pnpbp.2017.12.009  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02785846_v82_n_p1_Gonzalez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02785846_v82_n_p1_Gonzalez  |y Registro en la Biblioteca Digital 
961 |a paper_02785846_v82_n_p1_Gonzalez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86190