Abrogation of glucosidase I–mediated glycoprotein deglucosylation results in a sick phenotype in fission yeasts: Model for the human MOGS-CDG disorder

Glucosidase I (GI) removes the outermost glucose from protein-linked Glc 3 Man 9 GlcNAc 2 (G3M9) in the endoplasmic reticulum (ER). Individuals with congenital disorders of glycosylation MOGS-CDG bear mutations in the GI-encoding gene (gls1). Although GI absence has been reported to produce lethalit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gallo, G.L
Otros Autores: Valko, A., Aramburu, S.I, Etchegaray, E., Völker, C., Parodi, A.J, D’Alessio, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Society for Biochemistry and Molecular Biology Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16835caa a22013937a 4500
001 PAPER-25352
003 AR-BaUEN
005 20230518205723.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85059236352 
024 7 |2 cas  |a glucosidase, 9033-06-1; glucosyltransferase, 9031-48-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JBCHA 
100 1 |a Gallo, G.L. 
245 1 0 |a Abrogation of glucosidase I–mediated glycoprotein deglucosylation results in a sick phenotype in fission yeasts: Model for the human MOGS-CDG disorder 
260 |b American Society for Biochemistry and Molecular Biology Inc.  |c 2018 
270 1 0 |m D’Alessio, C.; Fundación Instituto Leloir–IIBBA, CONICETArgentina; email: cdalessio@leloir.org.ar 
506 |2 openaire  |e Política editorial 
504 |a Aebi, M., N-Linked protein glycosylation in the ER (2013) Biochim. Biophys. Acta, 1833, pp. 2430-2437 
504 |a Mohorko, E., Glockshuber, R., Aebi, M., Oligosaccharyltrans-ferase: The central enzyme of N-linked protein glycosylation (2011) J. Inherit. Metab. Dis., 34, pp. 869-878 
504 |a Parodi, A.J., Protein glucosylation and its role in protein folding (2000) Annu. Rev. Biochem., 69, pp. 69-93 
504 |a D’Alessio, C., Caramelo, J.J., Parodi, A.J., UDP-GlC:glycopro-tein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control (2010) Semin. Cell Dev. Biol., 21, pp. 491-499 
504 |a Sousa, M.C., Ferrero-Garcia, M.A., Parodi, A.J., Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase (1992) Biochemistry, 31, pp. 97-105 
504 |a Caramelo, J.J., Castro, O.A., Alonso, L.G., De Prat-Gay, G., Parodi, A.J., UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 86-91 
504 |a Freeze, H.H., Schachter, H., Kinoshita, T., (2015) Essentials of Glycobiology, pp. 569-582. , Varki, A., Cummings, R. D., Esko, J. D., Stanley, Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., and Seeberger, H., eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 
504 |a De Praeter, C.M., Gerwig, G.J., Bause, E., Nuytinck, L.K., Vliegenthart, J.F., Breuer, W., Kamerling, J.P., Van Coster, R.N., A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency (2000) Am. J. Hum. Genet., 66, pp. 1744-1756 
504 |a Sadat, M.A., Moir, S., Chun, T.W., Lusso, P., Kaplan, G., Wolfe, L., Memoli, M.J., Garofalo, M., Glycosylation, hypogammaglobulinemia, and resistance to viral infections (2014) N. Engl. J. Med., 370, pp. 1615-1625 
504 |a Fernández, F.S., Trombetta, S.E., Hellman, U., Parodi, A.J., Purification to homogeneity of UDP-glucose:glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme from Saccharomyces cerevisiae (1994) J. Biol. Chem., 269, pp. 30701-30706 
504 |a Kim, D.U., Hayles, J., Kim, D., Wood, V., Park, H.O., Won, M., Yoo, H.S., Shim, Y.S., Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe (2010) Nat. Biotechnol., 28, pp. 617-623 
504 |a Herscovics, A., Processing glycosidases of Saccharomyces cerevisiae (1999) Biochim. Biophys. Acta, 1426, pp. 275-285 
504 |a Völker, C., De Praeter, C.M., Hardt, B., Breuer, W., Kalz-Füller, B., Van Coster, R.N., Bause, E., Processing of N-linked carbohydrate chains in a patient with glucosidase I deficiency (CDG type IIb) (2002) Glycobiology, 12, pp. 473-483 
504 |a Piel, M., Tran, P.T., Cell shape and cell division in fission yeast (2009) Curr. Biol., 19, pp. R823-R827 
504 |a Hossain, T.J., Harada, Y., Hirayama, H., Tomotake, H., Seko, A., Suzuki, T., Structural analysis of free N-glycans in -glucosidase mutants of Saccharomyces cerevisiae: Lack of the evidence for the occurrence of catabolic -glucosidase acting on the N-glycans (2016) PLoS One, 11 
504 |a Burda, P., Aebi, M., The ALG10 locus of Saccharomyces cerevisiae encodes the -1,2 glucosyltransferase of the endoplasmic reticulum: The terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation (1998) Glycobiology, 8, pp. 455-462 
504 |a Wood, V., Harris, M.A., McDowall, M.D., Rutherford, K., Vaughan, B.W., Staines, D.M., Aslett, M., Oliver, S.G., Pombase: A comprehensive online resource for fission yeast (2012) Nucleic Acids Res, 40, pp. D695-D699 
504 |a McDowall, M.D., Harris, M.A., Lock, A., Rutherford, K., Staines, D.M., Bähler, J., Kersey, P.J., Wood, V., Pombase 2015: Updates to the fission yeast database (2015) Nucleic Acids Res, 43, pp. D656-D661 
504 |a Buschhorn, B.A., Kostova, Z., Medicherla, B., Wolf, D.H., A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins (2004) FEBS Lett, 577, pp. 422-426 
504 |a Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P., Jakob, C.A., Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD (2005) Mol. Cell, 19, pp. 765-775 
504 |a Fernandez, F., Jannatipour, M., Hellman, U., Rokeach, L.A., Parodi, A.J., A new stress protein: Synthesis of Schizosaccharomyces pombe UDP–Glc:glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability (1996) EMBO J, 15, pp. 705-713 
504 |a Núñez, A., Dulude, D., Jbel, M., Rokeach, L.A., Calnexin is essential for survival under nitrogen starvation and stationary phase in Schizosaccharomyces pombe (2015) PLoS One, 10 
504 |a Wild, R., Kowal, J., Eyring, J., Ngwa, E.M., Aebi, M., Locher, K.P., Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation (2018) Science, 359, pp. 545-550 
504 |a Nasab, F.P., Schulz, B.L., Gamarro, F., Parodi, A.J., Aebi, M., All in one: Leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae (2008) Mol. Biol. Cell, 19, pp. 3758-3768 
504 |a Parodi, A.J., N-Glycosylation in trypanosomatid protozoa (1993) Glycobiology, 3, pp. 193-199 
504 |a Fanchiotti, S., Fernández, F., D’Alessio, C., Parodi, A.J., The UDP-Glc:glycoprotein glucosyltransferase is essential for Schizosaccharomyces pombe viability under conditions of extreme endoplasmic reticulum stress (1998) J. Cell Biol., 143, pp. 625-635 
504 |a Bredeston, L.M., Marino-Buslje, C., Mattera, V.S., Buzzi, L.I., Parodi, A.J., D’Alessio, C., The conundrum of UDP-Glc entrance into the yeast ER lumen (2017) Glycobiology, 27, pp. 64-79 
504 |a Chavan, M., Suzuki, T., Rekowicz, M., Lennarz, W., Genetic, biochemical, and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall 1,6-glucan of Saccharomyces cerevisiae (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 15381-15386 
504 |a Osumi, M., Visualization of yeast cells by electron microscopy (2012) J. Electron Microsc., 61, pp. 343-365 
504 |a Lubas, W.A., Spiro, R.G., Golgi endo--D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme (1987) J. Biol. Chem., 262, pp. 3775-3781 
504 |a D’Alessio, C., Fernández, F., Trombetta, E.S., Parodi, A.J., Genetic evidence for the heterodimeric structure of glucosidase II. The effect of disrupting the subunit-encoding genes on glycoprotein folding (1999) J. Biol. Chem., 274, pp. 25899-25905 
504 |a Kelleher, D.J., Gilmore, R., An evolving view of the eukaryotic oligosaccharyltransferase (2006) Glycobiology, 16, pp. 47R-62R 
504 |a Katoh, T., Takase, J., Tani, Y., Amamoto, R., Aoshima, N., Tiemeyer, M., Yamamoto, K., Ashida, H., Deficiency of -glucosidase I alters glycoprotein glycosylation and lifespan in Caenorhabditis elegans (2013) Glycobiology, 23, pp. 1142-1151 
504 |a Hardt, B., Völker, C., Mundt, S., Salska-Navarro, M., Hauptmann, M., Bause, E., Human endo-1,2-mannosidase is a Golgi-resident type II membrane protein (2005) Biochimie, 87, pp. 169-179 
504 |a Alfa, C., Fantes, P., Hyams, J., McLeod, M., Wabrik, E., (1993) Experiments with Fission Yeast: A Laboratory Manual, p. 188. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 
504 |a Moreno, S., Klar, A., Nurse, P., Molecular genetic analysis of fission yeast Schizosaccharomyces pombe (1991) Methods Enzymol, 194, pp. 795-823 
504 |a Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 
504 |a Hoffman, C.S., Winston, F., A 10-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli (1987) Gene, 57, pp. 267-272 
504 |a Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., Kobayashi, Y., Yoshida, M., ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe (2006) Nat. Biotechnol., 24, pp. 841-847 
504 |a Chino, A., Watanabe, K., Moriya, H., Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe (2010) PLoS One, 5 
504 |a Hagan, I.M., Carr, A.M., Grallert, A., Nurse, P., (2016) Fission Yeast: A Laboratory Manual, p. 490. , Hagan, I. M., Carr, A. M, Grallert, A., and Nurse, eds Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 
504 |a Sato, M., Dhut, S., Toda, T., New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe (2005) Yeast, 22, pp. 583-591 
504 |a Soussilane, P., Soussillane, P., D’Alessio, C., Paccalet, T., Fitchette, A.C., Parodi, A.J., Williamson, R., Gomord, V., N-Glycan trimming by glucosidase II is essential for Arabidopsis development (2009) Glycoconj. J., 26, pp. 597-607 
504 |a D’Alessio, C., Trombetta, E.S., Parodi, A.J., Nucleoside diphos-phatase and glycosyltransferase activities can localize to different subcellular compartments in Schizosaccharomyces pombe (2003) J. Biol. Chem., 278, pp. 22379-22387 
504 |a Stigliano, I.D., Alculumbre, S.G., Labriola, C.A., Parodi, A.J., D’Alessio, C., Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo (2011) Mol. Biol. Cell, 22, pp. 1810-1823 
504 |a Stigliano, I.D., Caramelo, J.J., Labriola, C.A., Parodi, A.J., D’Alessio, C., Glucosidase II subunit modulates N-glycan trimming in fission yeasts and mammals (2009) Mol. Biol. Cell, 20, pp. 3974-3984 
504 |a (2013) R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, , Vienna, Austria 
504 |a Roux, A.E., Quissac, A., Chartrand, P., Ferbeyre, G., Rokeach, L.A., Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2 (2006) Aging Cell, 5, pp. 345-357 
504 |a Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Bertozzi, C.R., Symbol nomenclature for graphical representations of glycans (2015) Glycobiology, 25, pp. 1323-1324 
520 3 |a Glucosidase I (GI) removes the outermost glucose from protein-linked Glc 3 Man 9 GlcNAc 2 (G3M9) in the endoplasmic reticulum (ER). Individuals with congenital disorders of glycosylation MOGS-CDG bear mutations in the GI-encoding gene (gls1). Although GI absence has been reported to produce lethality in Schizosaccharomyces pombe yeasts, here we obtained two viable gls1 mutants, one with a very sick but not lethal phenotype (gls1-S) and the other with a healthier one (gls1-H). The sick strain displayed only G3M9 as an ER protein–linked oligosaccharide, whereas the healthier strain had both G3M9 and Man 9 GlcNAc 2 . The lipid-linked oligosaccharide patterns of the two strains revealed that the most abundantly formed glycans were G3M9 in gls1-S and Glc 2 Man 9 GlcNAc 2 in gls1-H, suggesting reduced Alg10p glucosyltransferase activity in the gls1-H strain. A mutation in the alg10 gene was indeed observed in this strain. Our results indicated that abrogated G3M9 deglucosylation was responsible for the severe defects observed in gls1-S cells. Further studies disclosed that the defects could not be ascribed to disruption of glycoprotein entrance into calnexin-folding cycles, inhibition of the oligosaccharyltransferase by transfer reaction products, or reduced proteasomal degradation of misfolded glycoproteins. Lack of triglucosylated glycoprotein deglucosylation neither significantly prevented glycan elongation in the Golgi nor modified the overall cell wall monosaccharide composition. Nevertheless, it resulted in a distorted cell wall and in the absence of underlying ER membranes. Furthermore, Golgi expression of human endomannosidase partially restored normal growth in gls1-S cells. We propose that accumulation of G3M9-bearing glycoproteins is toxic and at least partially responsible for defects observed in MOGS-CDG. © 2018 Gallo et al.  |l eng 
536 |a Detalles de la financiación: National Research Council 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP-11220150100759, 3Both 
536 |a Detalles de la financiación: This work was supported in part by the National Research Council (CONICET, Argentina) Grant PIP-11220150100759. The authors declare that they have no conflicts of interest with the contents of this article. This article contains Figs. S1–S5 and Table S1. 1 Both authors are CONICET fellows. 2 These authors contributed equally to this work. 3Both authors are Career Investigators of the National Research Council (CONICET, Argentina). 4 To whom correspondence should be addressed: Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina. Tel.: 5411-5238-7500 (Ext. 2302); Fax: 5411-5238-7501; E-mail: cdalessio@ leloir.org.ar. 
593 |a Fundación Instituto Leloir–IIBBA, CONICET, Buenos Aires, C1405BWE, Argentina 
593 |a Institute of Biochemistry and Molecular Biology Medical Faculty, University of Bonn, Bonn, 53115, Germany 
593 |a Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina 
593 |a Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina 
690 1 0 |a GLUCOSIDASE 
690 1 0 |a GLUCOSIDASE I 
690 1 0 |a GLUCOSYLTRANSFERASE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ARTICLE 
690 1 0 |a BIOACCUMULATION 
690 1 0 |a CELL DEATH 
690 1 0 |a CELL ELONGATION 
690 1 0 |a CELLULAR DISTRIBUTION 
690 1 0 |a CHEMICAL MODIFICATION 
690 1 0 |a CONFORMATION 
690 1 0 |a CONGENITAL DISORDER OF GLYCOSYLATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DEGLUCOSYLATION 
690 1 0 |a ENDOPLASMIC RETICULUM 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FUNGAL CELL 
690 1 0 |a FUNGAL CELL WALL 
690 1 0 |a FUNGUS GROWTH 
690 1 0 |a GENE MUTATION 
690 1 0 |a NONHUMAN 
690 1 0 |a PHENOTYPE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN DEGRADATION 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FOLDING 
690 1 0 |a PROTEIN MISFOLDING 
690 1 0 |a SCHIZOSACCHAROMYCES POMBE 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
700 1 |a Valko, A. 
700 1 |a Aramburu, S.I. 
700 1 |a Etchegaray, E. 
700 1 |a Völker, C. 
700 1 |a Parodi, A.J. 
700 1 |a D’Alessio, C. 
773 0 |d American Society for Biochemistry and Molecular Biology Inc., 2018  |g v. 293  |h pp. 19957-19973  |k n. 52  |p J. Biol. Chem.  |x 00219258  |w (AR-BaUEN)CENRE-175  |t Journal of Biological Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059236352&doi=10.1074%2fjbc.RA118.004844&partnerID=40&md5=140ebf38538ef62c51696cf85c9488d7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1074/jbc.RA118.004844  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00219258_v293_n52_p19957_Gallo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219258_v293_n52_p19957_Gallo  |y Registro en la Biblioteca Digital 
961 |a paper_00219258_v293_n52_p19957_Gallo  |b paper  |c NP 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a NORI 
999 |c 86305