Local temperatures and local terms in modular Hamiltonians

We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Arias, R.E
Otros Autores: Blanco, D.D, Casini, Horacio Germán, Huerta, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physical Society 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07331caa a22007097a 4500
001 PAPER-25483
003 AR-BaUEN
005 20241204091939.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85021253064 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Arias, R.E. 
245 1 0 |a Local temperatures and local terms in modular Hamiltonians 
260 |b American Physical Society  |c 2017 
504 |a Bisognano, J.J., Wichmann, E.H., On the duality condition for quantum fields (1976) J. Math. Phys. (N.Y.), 17, p. 303 
504 |a Callan, C.G., Jr., Wilczek, F., On geometric entropy (1994) Phys. Lett. B, 333, p. 55 
504 |a Wong, G., Klich, I., Pando Zayas, L.A., Vaman, D., Entanglement temperature and entanglement entropy of excited states J. High Energy Phys., 2013 (12), p. 020 
504 |a Cardy, J., Tonni, E., Entanglement hamiltonians in two-dimensional conformal field theory (2016) J. Stat. Mech., 1612, p. 123103 
504 |a Casini, H., Relative entropy and the Bekenstein bound (2008) Classical Quantum Gravity, 25, p. 205021 
504 |a Wall, A.C., A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices (2012) Phys. Rev. D, 85, p. 104049 
504 |a Wall, A.C., Erratum (2013) Phys. Rev. D, 87, p. 069904E 
504 |a Bousso, R., Casini, H., Fisher, Z., Maldacena, J., Entropy on a null surface for interacting quantum field theories and the Bousso bound (2015) Phys. Rev. D, 91, p. 084030 
504 |a Bousso, R., Casini, H., Fisher, Z., Maldacena, J., Proof of a quantum Bousso bound (2014) Phys. Rev. D, 90, p. 044002 
504 |a Unruh, W.G., Notes on black hole evaporation (1976) Phys. Rev. D, 14, p. 870 
504 |a Buchholz, D., Solveen, C., Unruh effect and the concept of temperature (2013) Classical Quantum Gravity, 30, p. 085011 
504 |a Blanco, D.D., Casini, H., Hung, L.Y., Myers, R.C., Relative entropy and holography J. High Energy Phys., 2013 (8), p. 060 
504 |a Lashkari, N., McDermott, M.B., Van Raamsdonk, M., Gravitational dynamics from entanglement thermodynamics J. High Energy Phys., 2014 (4), p. 195 
504 |a Faulkner, T., Guica, M., Hartman, T., Myers, R.C., Van Raamsdonk, M., Gravitation from entanglement in holographic CFTs J. High Energy Phys., 2014 (3), p. 051 
504 |a De Boer, J., Haehl, F.M., Heller, M.P., Myers, R.C., Entanglement, holography and causal diamonds J. High Energy Phys., 2016 (8), p. 162 
504 |a Faulkner, T., Leigh, R.G., Parrikar, O., Wang, H., Modular Hamiltonians for deformed half-spaces and the averaged null energy condition J. High Energy Phys., 2016 (9), p. 038 
504 |a Vedral, V., The role of relative entropy in quantum information theory (2002) Rev. Mod. Phys., 74, p. 197 
504 |a Hislop, P.D., Longo, R., Modular structure of the local algebras associated with the free massless scalar field theory (1982) Commun. Math. Phys., 84, p. 71 
504 |a Casini, H., Huerta, M., Myers, R.C., Towards a derivation of holographic entanglement entropy J. High Energy Phys., 2011 (5), p. 036 
504 |a Casini, H., Huerta, M., Reduced density matrix and internal dynamics for multicomponent regions (2009) Classical Quantum Gravity, 26, p. 185005 
504 |a Longo, R., Martinetti, P., Rehren, K.H., Geometric modular action for disjoint intervals and boundary conformal field theory (2010) Rev. Math. Phys., 22, p. 331 
504 |a Arias, R., Casini, H., Huerta, M., Pontello, D., Modular Hamiltonian for A Free Massless Scalar in (Equation Presented), , (to be published) 
504 |a Wolf, M., A first course on twistors, integrability and gluon scattering amplitudes (2010) J. Phys. A, 43, p. 393001 
504 |a Fewster, C.J., Hollands, S., Quantum energy inequalities in two-dimensional conformal field theory (2005) Rev. Math. Phys., 17, p. 577 
504 |a Frenkel, I., Lepowsky, J., Meurman, A., (1988) Vertex Operator Algebras and the Monster, , (Academic, Boston) 
504 |a Peschel, I., Calculation of reduced density matrices from correlation functions (2003) J. Phys. A, 36, p. L205 
504 |a Gelfand, I.M., Shilov, G.E., (1964) Generalized Functions, 1. , (AMS Chelsea Publishing, Providence) 
504 |a Casini, H., Huerta, M., Entanglement entropy in free quantum field theory (2009) J. Phys. A, 42, p. 504007 
506 |2 openaire  |e Política editorial 
520 3 |a We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, especially the ones affecting null directions. For regions with any number of intervals in two spacetime dimensions, the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically that this is the case for free massive scalar and Dirac fields. In dimensions d≥3, the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field, we classify the structure of the local terms. © 2017 American Physical Society.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de Cuyo 
536 |a Detalles de la financiación: Comisión Nacional de Energía Atómica, Gobierno de Argentina, CNEA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Simons Foundation 
536 |a Detalles de la financiación: This work was partially supported by CONICET, CNEA and Universidad Nacional de Cuyo, Argentina. H.C. acknowledges support from an It From Qubit grant of the Simons Foundation. 
593 |a Instituto de Física de la Plata, CONICET, C.C. 67, La Plata, 1900, Argentina 
593 |a Centro Atómico Bariloche, S.C. de Bariloche, Río Negro, 8400, Argentina 
593 |a CONICET, Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio (IAFE), Buenos Aires, Argentina 
700 1 |a Blanco, D.D. 
700 1 |a Casini, Horacio Germán 
700 1 |a Huerta, M. 
773 0 |d American Physical Society, 2017  |g v. 95  |k n. 6  |p Phy. Rev. D  |x 24700010  |t Physical Review D 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021253064&doi=10.1103%2fPhysRevD.95.065005&partnerID=40&md5=263f3052fa06c8319e2f0db21e0a6b66  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevD.95.065005  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_24700010_v95_n6_p_Arias  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v95_n6_p_Arias  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_24700010_v95_n6_p_Arias  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion