Local temperatures and local terms in modular Hamiltonians
We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
American Physical Society
2017
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 07331caa a22007097a 4500 | ||
---|---|---|---|
001 | PAPER-25483 | ||
003 | AR-BaUEN | ||
005 | 20241204091939.0 | ||
008 | 190410s2017 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85021253064 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Arias, R.E. | |
245 | 1 | 0 | |a Local temperatures and local terms in modular Hamiltonians |
260 | |b American Physical Society |c 2017 | ||
504 | |a Bisognano, J.J., Wichmann, E.H., On the duality condition for quantum fields (1976) J. Math. Phys. (N.Y.), 17, p. 303 | ||
504 | |a Callan, C.G., Jr., Wilczek, F., On geometric entropy (1994) Phys. Lett. B, 333, p. 55 | ||
504 | |a Wong, G., Klich, I., Pando Zayas, L.A., Vaman, D., Entanglement temperature and entanglement entropy of excited states J. High Energy Phys., 2013 (12), p. 020 | ||
504 | |a Cardy, J., Tonni, E., Entanglement hamiltonians in two-dimensional conformal field theory (2016) J. Stat. Mech., 1612, p. 123103 | ||
504 | |a Casini, H., Relative entropy and the Bekenstein bound (2008) Classical Quantum Gravity, 25, p. 205021 | ||
504 | |a Wall, A.C., A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices (2012) Phys. Rev. D, 85, p. 104049 | ||
504 | |a Wall, A.C., Erratum (2013) Phys. Rev. D, 87, p. 069904E | ||
504 | |a Bousso, R., Casini, H., Fisher, Z., Maldacena, J., Entropy on a null surface for interacting quantum field theories and the Bousso bound (2015) Phys. Rev. D, 91, p. 084030 | ||
504 | |a Bousso, R., Casini, H., Fisher, Z., Maldacena, J., Proof of a quantum Bousso bound (2014) Phys. Rev. D, 90, p. 044002 | ||
504 | |a Unruh, W.G., Notes on black hole evaporation (1976) Phys. Rev. D, 14, p. 870 | ||
504 | |a Buchholz, D., Solveen, C., Unruh effect and the concept of temperature (2013) Classical Quantum Gravity, 30, p. 085011 | ||
504 | |a Blanco, D.D., Casini, H., Hung, L.Y., Myers, R.C., Relative entropy and holography J. High Energy Phys., 2013 (8), p. 060 | ||
504 | |a Lashkari, N., McDermott, M.B., Van Raamsdonk, M., Gravitational dynamics from entanglement thermodynamics J. High Energy Phys., 2014 (4), p. 195 | ||
504 | |a Faulkner, T., Guica, M., Hartman, T., Myers, R.C., Van Raamsdonk, M., Gravitation from entanglement in holographic CFTs J. High Energy Phys., 2014 (3), p. 051 | ||
504 | |a De Boer, J., Haehl, F.M., Heller, M.P., Myers, R.C., Entanglement, holography and causal diamonds J. High Energy Phys., 2016 (8), p. 162 | ||
504 | |a Faulkner, T., Leigh, R.G., Parrikar, O., Wang, H., Modular Hamiltonians for deformed half-spaces and the averaged null energy condition J. High Energy Phys., 2016 (9), p. 038 | ||
504 | |a Vedral, V., The role of relative entropy in quantum information theory (2002) Rev. Mod. Phys., 74, p. 197 | ||
504 | |a Hislop, P.D., Longo, R., Modular structure of the local algebras associated with the free massless scalar field theory (1982) Commun. Math. Phys., 84, p. 71 | ||
504 | |a Casini, H., Huerta, M., Myers, R.C., Towards a derivation of holographic entanglement entropy J. High Energy Phys., 2011 (5), p. 036 | ||
504 | |a Casini, H., Huerta, M., Reduced density matrix and internal dynamics for multicomponent regions (2009) Classical Quantum Gravity, 26, p. 185005 | ||
504 | |a Longo, R., Martinetti, P., Rehren, K.H., Geometric modular action for disjoint intervals and boundary conformal field theory (2010) Rev. Math. Phys., 22, p. 331 | ||
504 | |a Arias, R., Casini, H., Huerta, M., Pontello, D., Modular Hamiltonian for A Free Massless Scalar in (Equation Presented), , (to be published) | ||
504 | |a Wolf, M., A first course on twistors, integrability and gluon scattering amplitudes (2010) J. Phys. A, 43, p. 393001 | ||
504 | |a Fewster, C.J., Hollands, S., Quantum energy inequalities in two-dimensional conformal field theory (2005) Rev. Math. Phys., 17, p. 577 | ||
504 | |a Frenkel, I., Lepowsky, J., Meurman, A., (1988) Vertex Operator Algebras and the Monster, , (Academic, Boston) | ||
504 | |a Peschel, I., Calculation of reduced density matrices from correlation functions (2003) J. Phys. A, 36, p. L205 | ||
504 | |a Gelfand, I.M., Shilov, G.E., (1964) Generalized Functions, 1. , (AMS Chelsea Publishing, Providence) | ||
504 | |a Casini, H., Huerta, M., Entanglement entropy in free quantum field theory (2009) J. Phys. A, 42, p. 504007 | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, especially the ones affecting null directions. For regions with any number of intervals in two spacetime dimensions, the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically that this is the case for free massive scalar and Dirac fields. In dimensions d≥3, the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field, we classify the structure of the local terms. © 2017 American Physical Society. |l eng | |
536 | |a Detalles de la financiación: Universidad Nacional de Cuyo | ||
536 | |a Detalles de la financiación: Comisión Nacional de Energía Atómica, Gobierno de Argentina, CNEA | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
536 | |a Detalles de la financiación: Simons Foundation | ||
536 | |a Detalles de la financiación: This work was partially supported by CONICET, CNEA and Universidad Nacional de Cuyo, Argentina. H.C. acknowledges support from an It From Qubit grant of the Simons Foundation. | ||
593 | |a Instituto de Física de la Plata, CONICET, C.C. 67, La Plata, 1900, Argentina | ||
593 | |a Centro Atómico Bariloche, S.C. de Bariloche, Río Negro, 8400, Argentina | ||
593 | |a CONICET, Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio (IAFE), Buenos Aires, Argentina | ||
700 | 1 | |a Blanco, D.D. | |
700 | 1 | |a Casini, Horacio Germán | |
700 | 1 | |a Huerta, M. | |
773 | 0 | |d American Physical Society, 2017 |g v. 95 |k n. 6 |p Phy. Rev. D |x 24700010 |t Physical Review D | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021253064&doi=10.1103%2fPhysRevD.95.065005&partnerID=40&md5=263f3052fa06c8319e2f0db21e0a6b66 |x registro |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevD.95.065005 |x doi |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_24700010_v95_n6_p_Arias |x handle |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v95_n6_p_Arias |x registro |y Registro en la Biblioteca Digital |
961 | |a paper_24700010_v95_n6_p_Arias |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion |