Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride

The glass transition temperature (Tg) and viscosity of aqueous trehalose and its mixtures with either NaCl or Na2B4O7 (borax) have been measured over a wide range of concentration. Borax and sodium chloride increase the viscosity and Tg′ of aqueous trehalose. Although the presence of ionic charges m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Miller, D.P
Otros Autores: De Pablo, J.J, Corti, H.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1999
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07670caa a22008657a 4500
001 PAPER-2553
003 AR-BaUEN
005 20230518203159.0
008 190411s1999 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0006418818 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCBF 
100 1 |a Miller, D.P. 
245 1 0 |a Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride 
260 |c 1999 
270 1 0 |m Miller, D.P.; Department of Chemical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, United States; email: depablo@engr.wisc.edu 
506 |2 openaire  |e Política editorial 
504 |a Clegg, J.S., (1965) Comp. Biochem. Physiol., 14, p. 135 
504 |a Honadel, T.E., Killian, G.J., (1988) Cryobiology, 25, p. 331 
504 |a Elbein, A.D., (1974) Biochem., 30, p. 227 
504 |a Crowe, J.H., Crowe, L.M., Mouradian, R., (1983) Cryobiology, 20, p. 346 
504 |a Roser, B.J., (1990), Protection of Proteins and the Like. U.S. Patent 4,891,319, Jan. 2; Roser, B.J., (1992), Preservation of Viruses. U.S. Patent 5,149,653, Sept. 22; Crowe, L.M., Crowe, J.H., Rudolph, A., Womersley, C., Appel, L., (1985) Arch. Biochem. Biophys., 242, p. 240 
504 |a Schebor, C., Buera, M.P., Chirife, J., (1996) J. Food. Eng., 30, p. 269 
504 |a Cardona, S., Schebor, C., Buera, M.P., Karel, M., Chirife, J., (1997) J. Food Sei., 62, p. 105 
504 |a Crowe, J.H., Crowe, L.M., Chapman, D., (1984) Arch. Biochem. Biophys., 232, p. 400 
504 |a Green, J.L., Angell, C.A., (1989) J. Phys. Chem., 93, p. 2880 
504 |a Ding, S.P., Fan, J., Green, J.L., Lu, Q., Sanchez, E., Angell, C.A., (1996) J. Them. Anal., 47, p. 1391 
504 |a Crowe, L.M., Mouradian, R., Crowe, J.H., Jackson, S.A., Womersley, C., (1984) Biochim. Biophys. Acta, 769, p. 141 
504 |a Carpenter, J.F., Prestrelski, S.J., Anchordoguy, T.J., Arakawa, T., (1994) Formulation and Delivery of Proteins and Peptides, , Cleland, J. L., Langer, R., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, Chapter 9 
504 |a Crowe, J.H., Leslie, S.B., Crowe, L.M., (1994) Cryobiology, 31, p. 355 
504 |a Dakhnovskii, Y., Lubchenko, V., (1996) J. Chem. Phys., 104, p. 664 
504 |a Miller, D.P., De Pablo, J.J., Corti, H.R., (1996) J. Chem. Phys., 705, p. 8979 
504 |a Shalaev, E.Y., Franks, F., Echlin, P., (1996) /. Phys. Chem., 700, p. 1144 
504 |a Miller, D.P., Anderson, R.E., De Pablo, J., (1998) J. Pluam. Res., 75, p. 1215 
504 |a Aruga, R., (1985) Talanta, 32, p. 517 
504 |a Paal, T., Barcza, L., (1975) Acta Cltim. Acad. Sei. Hung., 85, p. 139 
504 |a Conner, J.M., Bulgrin, V.C., (1967) J. Inorg. Nucl. Chem., 29, p. 1953 
504 |a Pezron, E., Leibler, L., Ricard, A., Lafuma, F., Audebert, R., (1989) Macromolecules, 22, p. 1169 
504 |a Pezron, E., Leibler, L., Lafuma, F., (1989) Macromolecules, 22, p. 2656 
504 |a Bellows, R.J., King, C.J., (1973) AIChE Symp. Ser. 132, 69, p. 33 
504 |a Miller, D.P., De Pablo, J.J., Corti, H.R., (1997) Pharm. Res., 14, p. 578 
504 |a Saleki-Gerhardt, A., (1993), Ph.D. Thesis, University of Wisconsin-Madison; Crowe, L.M., Reid, D.S., Crowe, J.H., (1996) Biophys. J., 77, p. 2087 
504 |a Hermans, P.H., (1925) Z Anorg. Chem., 142, p. 83 
504 |a Lajunen, K., Hakkinen, P., Purokoski, S., (1986) Finnish Chem. Lett., 13, p. 21 
504 |a Roy, G.L., Laferriere, A.L., Edwards, J.O., (1957) J. Inorg. Nucl. Chem., 4, p. 106 
504 |a Ediger, M.D., Angell, C.A., Nagel, S.R., (1996) J. Phys Chem., 700, p. 13200 
504 |a Mathlouthi, M., Génotelle, J., (1995) Sucrose: Properties and Applications, 1st Ed., pp. 126-154. , Mathlouthi, M., Reiser, P., Eds.; Blackie Academic & Professional: London, New York 
504 |a Williams, M.L., Landel, R.F., Ferry, J.D., (1955) J. Am. Chem. Soc., 77, p. 3701 
504 |a Ferry, J.D., (1980) Viscoelastic Properties of Polymers, 3rd Ed., , John Wiley & Sons: New York 
504 |a Hill, R.M., Dissado, L.A., (1982) J. Phys. C: Solid State Phys., 75, p. 5171 
504 |a Champion, D., Hervet, H., Blond, G., Lemeste, M., Simatos, D., (1997) J. Phys. Chem. B, 707, p. 10674 
504 |a Kerr, W.L., Reid, D.S., (1994) Lebensm.-Wiss. Technol., 27, p. 225 
504 |a Soesanto, T., Williams, M.C., (1981) J. Phys. Chem., 85, p. 3338 
504 |a Angell, C.A., Stell, R.C., Sichina, W.J., (1982) J. Phys. Chem., 86, p. 1540 
504 |a Plazek, D.J., Magill, J.H., (1966) J. Chem. Phys., 45, p. 3038 
504 |a Plazek, D.J., Magill, J.H., Echeverría, I., Chay, I., (1999) J. Chem. Phys., 770, p. 10445 
504 |a Rossler, E., (1990) Phys. Rev. Lett., 65, p. 1595 
504 |a Rossler, E., (1990) J. Chem. Phys., 92, p. 3725 
504 |a Taborek, P., Kleiman, R.N., Bishop, D., (1986) J. Phys. Rev. B, 34, p. 1835 
504 |a Gotze, W., Sjogren, L., (1992) Rep. Prog. Phys., 55, p. 241 
504 |a Richert, R., Bassler, H., (1990) J. Phys. Condens. Matter, 2, p. 2273 
520 3 |a The glass transition temperature (Tg) and viscosity of aqueous trehalose and its mixtures with either NaCl or Na2B4O7 (borax) have been measured over a wide range of concentration. Borax and sodium chloride increase the viscosity and Tg′ of aqueous trehalose. Although the presence of ionic charges may partly explain some of the observed effects, it is clear that ionic solutes that form complexes with trehalose lead to a greater increase in Tg. The viscosity of supercooled aqueous mixtures was measured at several temperatures, most of them above the so-called crossover temperature, Tg′, where a change in the dynamics of relaxation processes is expected. The viscosities of all the binary and ternary mixtures exhibit the same temperature dependence when the temperature is scaled according to the Tg values; a change in the slope of the linearized WLF representation is observed at a temperature close to 1.27g. Above this temperature, a power law expression provides a similar description of the temperature dependence of viscosity as the WLF equation, the former having a physical justification in the mode coupling theory. © 1999 American Chemical Society.  |l eng 
593 |a Department of Chemical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, United States 
593 |a Institute de Química Física de Materiales, Ambiente Y Energía, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, 1428 Buenos Aires, Argentina 
593 |a Unidad de Actividad Química, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires, Argentina 
700 1 |a De Pablo, J.J. 
700 1 |a Corti, H.R. 
773 0 |d 1999  |g v. 103  |h pp. 10243-10249  |k n. 46  |p J. Phys. Chem. B  |x 15206106  |w (AR-BaUEN)CENRE-5879  |t Journal of Physical Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0006418818&partnerID=40&md5=62654b504c1821d07cec35306e998b0b  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15206106_v103_n46_p10243_Miller  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v103_n46_p10243_Miller  |y Registro en la Biblioteca Digital 
961 |a paper_15206106_v103_n46_p10243_Miller  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 63506