Cooperative behavior of fluoroquinolone combinations against Escherichia coli and Staphylococcus aureus

The effects of different combinations of ciprofloxacin (CIP) and norfloxacin (NOR) against Escherichia coli and Staphylococcus aureus were studied using checkerboard, fractional inhibitory concentration (FIC) and time-kill analysis methods. Results obtained by the checkerboard method showed that the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vitorino, G.P
Otros Autores: Becerra, M.C, Barrera, G.D, Caira, M.R, Mazzieri, M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Pharmaceutical Society of Japan 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15754caa a22014057a 4500
001 PAPER-25550
003 AR-BaUEN
005 20230518205737.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85020052702 
024 7 |2 cas  |a ciprofloxacin, 85721-33-1; norfloxacin, 70458-96-7; Anti-Bacterial Agents; Fluoroquinolones 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BPBLE 
100 1 |a Vitorino, G.P. 
245 1 0 |a Cooperative behavior of fluoroquinolone combinations against Escherichia coli and Staphylococcus aureus 
260 |b Pharmaceutical Society of Japan  |c 2017 
270 1 0 |m Vitorino, G.P.; Departamento de Farmacia, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad UniversitariaArgentina; email: gpinto@unpata.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Bollenbach, T., Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution (2015) Curr. Opin. Microbiol., 27, pp. 1-9 
504 |a Sader, H.S., Huynh, H.K., Jones, R.N., Contemporary in vitro synergy rates for aztreonam combined with newer fluoroquinolones and β-lactams tested against Gram-negative bacilli (2003) Diagn. Microbiol. Infect. Dis., 47, pp. 547-550 
504 |a Fung-Tomc, J.C., Gradelski, E., Valera, L., Huczko, E., Bonner, D.P., Synergistic activity of the novel desfluoro (6) quinolone, garenoxacin (BMS-284756), in combination with other antimicrobial agents against Pseudomonas aeruginosa and related species (2002) Int. J. Antimicrob. Agents, 20, pp. 57-60 
504 |a Mandal, S., Mandal, M., Pal, N.K., In vitro efficacy of ciprofloxacin alone and in combination with amoxycillin against Salmonella typhi isolates (2003) Indian J. Exp. Biol., 41, pp. 360-362 
504 |a Chen, Y.H., Peng, C.F., Lu, P.L., Tsai, J.J., Chen, T.P., In vitro activities of antibiotic combinations against clinical isolates of Pseudomonas aeruginosa (2004) Kaohsiung J. Med. Sci., 20, pp. 261-267 
504 |a Al-Hasan, M.N., Wilson, J.W., Lahr, B.D., Thomsen, K.M., Eckel-Passow, J.E., Vetter, E.A., Tleyjeh, I.M., Baddour, L.M., β-Lactam and fluoroquinolone combination antibiotic therapy for bacteremia caused by Gram-negative bacilli (2009) Antimicrob. Agents Chemother., 53, pp. 1386-1394 
504 |a Hernández, A., Sanchez, M.B., Martinez, J.L., Quinolone resistance: Much more than predicted (2011) Front Microbiol., 2, pp. 1-6 
504 |a Blondeau, J.M., Fluoroquinolones: Mechanism of action, classification, and development of resistance (2004) Surv. Ophthalmol., 49, pp. S73-S78 
504 |a Pommier, Y., Leo, E., Zhang, H., Marchand, C.H., DNA topoisomerases and their poisoning by anticancer and antibacterial drugs (2010) Chem. Biol., 17, pp. 421-433 
504 |a Hooper, D.C., Mechanisms of action of antimicrobials: Focus on fluoroquinolones (2001) Clin. Infect. Dis., 32, pp. S9-S15 
504 |a Fournier, B., Zhao, X., Lu, T., Drlica, K., Hooper, D., Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: Different patterns of quinolone-induced inhibition of DNA synthesis (2000) Antimicrob. Agents Chemother., 44, pp. 2160-2165 
504 |a Fournier, B., Hooper, D., Mutations in topoisomerase IV and DNA gyrase of Staphylococcus aureus: Novel pleiotropic effects on quinolone and coumarin activity (1998) Antimicrob. Agents Chemother., 42, pp. 121-128 
504 |a Aldred, K.J., Kerns, R.J., Osheroff, N., Mechanism of quinolone action and resistance (2014) Biochemistry, 53, pp. 1565-1574 
504 |a Shen, L.L., Mitscher, L.A., Sharma, P.N., O'Donnell, T.J., Chu, W.T., Cooper, C.S., Rosen, T., Pernet, A.G., Mechanism of inhibition of DNA gyrase by quinolone antibacterials: A cooperative drug-DNA binding model (1989) Biochemistry, 28, pp. 3886-3894 
504 |a Pali, G., Valisena, S., Ciarrocchi, G., Gatto, B., Palumbo, M., Quinolone binding to DNA is mediated by magnesium ions (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 9671-9675 
504 |a Fan, J.Y., Sun, D., Yu, H., Kerwin, S.M., Hurley, L.H., Self-assembly of a quinobenzoxazine-Mg2+ complex on DNA: A new paradigm for the structure of a drug-DNA complex and implications for the structure of the quinolone bacterial gyrase-DNA complex (1995) J. Med. Chem., 38, pp. 408-424 
504 |a Llorente, B., Leclerc, F., Cedergren, R., Using SAR and QSAR analysis to model the activity and structure of the quinolone-DNA complex (1996) Bioorg. Med. Chem., 4, pp. 61-71 
504 |a Heddle, J.G., Barnard, F.M., Wentzell, L.M., Maxwell, A., The interaction of drugs with DNA gyrase: A model for the molecular basis of quinolone action (2000) Nucleosides Nucleotides Nucleic Acids, 19, pp. 1249-1264 
504 |a Pinto Vitorino, G., Sperandeo, N.R., Caira, M.R., Mazzieri, M.R., A supramolecular assembly formed by heteroassociation of ciprofloxacin and norfloxacin in the solid state: Co-crystal synthesis and characterization (2013) Cryst. Growth Des., 13, pp. 1050-1058 
504 |a Fabbiani, F.P., Arlin, J.B., Buth, G., Dittrich, B., Florence, A.J., Herbst-Irmer, R., Sowa, H., Intermolecular interactions, disorder and twinning in ciprofloxacin-2,2-difluoroethanol (2/3) and ciprofloxacin-water (3/14.5) (2011) Acta Crystallogr. C, 67, pp. o120-o124 
504 |a Mafra, L., Santos, S.M., Siegel, R., Alves, I., Almeida Paz, F.A., Dudenko, D., Spiess, H.W., Packing interactions in hydrated and anhydrous forms of the antibiotic ciprofloxacin: A solid-state NMR, X-ray diffraction, and computer simulation study (2012) J. Am. Chem. Soc., 134, pp. 71-74 
504 |a Becerra, M.C., Eraso, A., Albesa, I., Comparison of oxidative stress induced by ciprofloxacin and pyoverdin in bacteria and in leukocytes to evaluate toxicity (2003) Luminescence, 18, pp. 334-340 
504 |a Becerra, M.C., Albesa, I., Oxidative stress induced by ciprofloxacin in Staphylococcus aureus (2002) Biochem. Biophys. Res. Commun., 297, pp. 1003-1007 
504 |a Dwyer, D.J., Kohanski, M.A., Hayete, B., Collins, J.J., Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli (2007) Mol. Syst. Biol., 3, p. 91 
504 |a Breda, S.A., Jimenez-Kairuz, A.F., Manzo, R.H., Olivera, M.E., Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives (2009) Int. J. Pharm., 371, pp. 106-113 
504 |a Dalhoff, A., Global floroquinolone resistance epidemiology and implications for clinical use (2012) Interdiscip. Perspect. Infect. Dis., 2012, pp. 1-37 
504 |a Redgrave, L.S., Sutton, S.B., Webber, M.A., Piddock, L.J., Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success (2014) Trends Microbiol., 22, pp. 438-445 
504 |a Fish, D.N., Fluoroquinolone adverse effects and drug interactions (2001) Pharmacotherapy, 21, pp. 253S-272S 
504 |a Leone, R., Venegoni, M., Motola, D., Moretti, U., Piazzetta, V., Cocci, A., Resi, D., Conforti, A., Adverse drug reactions related to the use of fluoroquinolone antimicrobials: An analysis of spontaneous reports and fluoroquinolone consumption data from three Italian regions (2003) Drug Saf., 26, pp. 109-120 
504 |a Liu, H.H., Safety profile of the fluoroquinolones (2010) Focus on Levofloxacin. Drug Saf., 33, pp. 353-369 
504 |a Isenberg, H.D., Synergism testing: Broth microdilution checkerboard and broth macrodilution methods (1992) Clinical Microbiology Procedures Handbook, 1, pp. 5161-5181. , Anon, American Society for Microbiology, Washington 
504 |a Guerillot, F., Carret, G., Flandrois, J.P., Mathematical model for comparison of time-killing curves (1993) Antimicrob. Agents Chemother., 37, pp. 1685-1689 
504 |a Ozaki, M., Segawa, J., Kitano, M., Tomii, Y., Honmura, T., Matsuda, M., Kise, M., Nishino, T., Structure-antibacterial activity and cytotoxicity relationships of thiazolo and thiazetoquinolone derivatives (1996) Biol. Pharm. Bull., 19, pp. 1457-1462 
504 |a Kim, J., Yoon, Y.H., Cho, I.H., Lee, J.M., Lee, K., Kim, J.E., Hong, K.H., Synthesis and antibacterial activity of a new series of quinolones with 7-substituent of [3.1.1]bicyclic amines (1996) Korean J. Med. Chem., 6, pp. 183-189 
504 |a Fung-Tomc, J.C., Gradelski, E., Valera, L., Kolek, B., Bonner, D.P., Comparative killing rates of fluoroquinolones and cell wall-active agents (2000) Antimicrob. Agents Chemother., 44, pp. 1377-1380 
504 |a Eliopoulos, G.M., Moellerig, R.C., Antimicrobial combinations (1996) Antibiotics in Laboratory Medicine, pp. 331-338. , (Lorian V ed.). Williams & Wilkins Co., U.S.A 
504 |a Belley, A., Neesham-Grenon, E., Arhin, F.F., McKay, G.A., Parr, T.R., Jr., Moeck, G., Assessment by time-kill methodology of the synergistic effects of oritavancin in combination with other antimicrobial agents against Staphylococcus aureus (2008) Antimicrob. Agents Chemother., 52, pp. 3820-3822 
504 |a Doern, C.D., When does 2 plus 2 equal 5? A review of antimicrobial synergy testing (2014) J. Clin. Microbiol., 52, pp. 4124-4128 
504 |a Balaji, V., Jeremiah, S.S., Baliga, P.R., Polymyxins: Antimicrobial susceptibility concerns and therapeutic options (2011) Indian J. Med. Microbiol., 29, pp. 230-242 
504 |a Dwyer, D., Belenky, P., Yang, J., MacDonald, I.C., Martell, J., Takahashi, N., Chan, C., Collins, J.J., Antibiotics induce redox-related physiological alterations as part of their lethality (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. E2100-E2109 
504 |a Belenky, P., Ye, J.D., Porter, C.B., Cohen, N.R., Lobritz, M.A., Ferrante, T., Jain, S., Collins, J.J., Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage (2015) Cell Reports, 13, pp. 968-980 
504 |a Kottur, J., Nair, D.T., Reactive oxygen species play an important role in the bactericidal activity of quinolone antibiotics (2016) Angew. Chem. Int. Ed. Engl., 55, pp. 2397-2400 
504 |a Masadeh, M.M., Alzoubi, K.H., Al-Azzam, S.I., Khabour, O.F., Al-Buhairan, A.M., Ciprofloxacin-induced antibacterial activity is atteneuated by pretreatment with antioxidant agents (2016) Pathogens, 5, p. 28 
504 |a Saveta Popa, D., Kiss, B., Vlase, L., Iepure, R., Loghin, F., Different patterns of oxidative stress generation for ciprofloxacin and norfloxacin (2007) Toxicol. Lett., 172 S, p. S25 
504 |a Barnes, A.I., Herrero, I., Albesa, I., New aspect of the synergistic antibacterial action of ampicillin and gentamicin (2005) Int. J. Antimicrob. Agents, 26, pp. 146-151 
504 |a Molina-Quiroz, R.C., Loyola, D., Muioz-Villagrán, C., Quatrini, R., Vásquez, C., Pirez-Donoso, J., DNA, cell wall and general oxidative damage underlie the tellurite/cefotaxime synergistic effect in Escherichia coli (2013) PLOS ONE, 8, p. e79499 
504 |a Smirnova, G.V., Tyulenev, A., Muzyka, N., Peters, M., Oktyabrsky, O., Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli (2017) Res. Microbiol., 168, pp. 64-73 
520 3 |a The effects of different combinations of ciprofloxacin (CIP) and norfloxacin (NOR) against Escherichia coli and Staphylococcus aureus were studied using checkerboard, fractional inhibitory concentration (FIC) and time-kill analysis methods. Results obtained by the checkerboard method showed that the more effectives combinations against Escherichia coli were 0.0009 μg/mL CIP0.0312 μg/mL NOR and 0.0037 μg/mL CIP0.0075 μg/mL NOR with a FIC index of 0.62. For Staphylococcus aureus, the combination of 0.0625 μg/mL CIP0.2500 μg/mL NOR showed a synergistic effect, with a FIC index of 0.50. The results of the time-kill method demonstrated either indifference or additivity of the combinations 0.0009 μg/mL CIP+0.0312 μg/mL NOR, 0.0018 μg/mL CIP+0.0312 μg/mL NOR, 0.0037 μg/mL CIP+0.0075 μg/mL NOR and 0.0037 μg/mL CIP+0.0156 μg/mL NOR at 24 h against E. coli. The combination 0.0037 μg/mL CIP+0.0312 μg/mL NOR showed synergistic activity. All the analyzed combinations evidenced bactericidal effects at 4 h. The combinations 0.0625 μg/mL CIP+0.2500 μg/mL NOR and 0.0625 μg/mL CIP+0.0625 μg/mL NOR showed indifference or additivity against S. aureus. None of them generated bactericidal effect at 4 h. Moreover, this last equimolecular combination (equivalent to 1/4 minimum inhibitory concentration (MIC) CIP+1/16 MIC NOR) generated higher reduction of nitro blue tetrazolium than drugs alone. By another way, combinations not equimolecular of CIP and NOR assayed, generated less levels of reactive oxygen species (ROS) than the components alone. © 2017 The Pharmaceutical Society of Japan.  |l eng 
593 |a Departamento de Farmacia, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Comodoro Rivadavia, Chubut, 9000, Argentina 
593 |a Departamento de Farmacia, IMBIV-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina 
593 |a Departamento de Química, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Comodoro Rivadavia, Chubut, 9000, Argentina 
593 |a Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa 
690 1 0 |a CIPROFLOXACIN 
690 1 0 |a COMBINATION 
690 1 0 |a COOPERATIVE BEHAVIOR 
690 1 0 |a FLUOROQUINOLONE 
690 1 0 |a NORFLOXACIN 
690 1 0 |a SINERGISTIC EFFECT 
690 1 0 |a CIPROFLOXACIN 
690 1 0 |a NORFLOXACIN 
690 1 0 |a QUINOLINE DERIVED ANTIINFECTIVE AGENT 
690 1 0 |a REACTIVE OXYGEN METABOLITE 
690 1 0 |a ANTIINFECTIVE AGENT 
690 1 0 |a QUINOLONE DERIVATIVE 
690 1 0 |a ANTIBACTERIAL ACTIVITY 
690 1 0 |a ANTIBIOTIC SENSITIVITY 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DRUG EFFECT 
690 1 0 |a DRUG EFFICACY 
690 1 0 |a DRUG MECHANISM 
690 1 0 |a DRUG POTENTIATION 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a FRACTIONAL INHIBITORY CONCENTRATION INDEX 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a MINIMUM INHIBITORY CONCENTRATION 
690 1 0 |a NONHUMAN 
690 1 0 |a PROTEIN BLOOD LEVEL 
690 1 0 |a STAPHYLOCOCCUS AUREUS 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a GROWTH, DEVELOPMENT AND AGING 
690 1 0 |a MICROBIAL SENSITIVITY TEST 
690 1 0 |a STAPHYLOCOCCUS AUREUS 
690 1 0 |a ANTI-BACTERIAL AGENTS 
690 1 0 |a DRUG SYNERGISM 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a FLUOROQUINOLONES 
690 1 0 |a MICROBIAL SENSITIVITY TESTS 
690 1 0 |a STAPHYLOCOCCUS AUREUS 
700 1 |a Becerra, M.C. 
700 1 |a Barrera, G.D. 
700 1 |a Caira, M.R. 
700 1 |a Mazzieri, M.R. 
773 0 |d Pharmaceutical Society of Japan, 2017  |g v. 40  |h pp. 758-764  |k n. 6  |p Biol. Pharm. Bull.  |x 09186158  |t Biological and Pharmaceutical Bulletin 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020052702&doi=10.1248%2fbpb.b16-00616&partnerID=40&md5=914b80c8353e3862f11fc4875873877d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1248/bpb.b16-00616  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09186158_v40_n6_p758_Vitorino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09186158_v40_n6_p758_Vitorino  |y Registro en la Biblioteca Digital 
961 |a paper_09186158_v40_n6_p758_Vitorino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86503