Comparative toxicity of PEG and folate-derived blue-emitting silicon nanoparticles: In vitro and in vivo studies
Aim: Amino functionalization is a first step modification aiming to achieve biomedical applications of silicon nanoparticles, for example, for photodynamic therapy or radiotherapy. Nevertheless, toxicity and low quantum yields due to the positive charge of amino groups emerge as a problem that could...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Future Medicine Ltd.
2019
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 10308caa a22008057a 4500 | ||
---|---|---|---|
001 | PAPER-25721 | ||
003 | AR-BaUEN | ||
005 | 20230518205750.0 | ||
008 | 190410s2019 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85061569450 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Calienni, M.N. | |
245 | 1 | 0 | |a Comparative toxicity of PEG and folate-derived blue-emitting silicon nanoparticles: In vitro and in vivo studies |
260 | |b Future Medicine Ltd. |c 2019 | ||
270 | 1 | 0 | |m Montanari, J.; Laboratorio de Biomembranas - GBEyB (IMBICE CCT-La Plata, CONICET), Departamento de Ciencia y Tecnología, Universidad Nacional de QuilmesArgentina; email: jmontanari@unq.edu.ar |
506 | |2 openaire |e Política editorial | ||
504 | |a Llansola Portolés, M.J., Nieto, F.R., Soria, D.B., Photophysical properties of blue-emitting silicon nanoparticles (2009) J. Phys. Chem. C, 113, pp. 13694-13702 | ||
504 | |a Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Silicon nanoparticle photophysics and singlet oxygen generation (2010) Langmuir, 26 (13), pp. 10953-10960 | ||
504 | |a Romero, J.J., Llansola-Portolés, M.J., Dell'Arciprete, M.L., Rodríguez, H.B., Moore, A.L., Gonzalez, M.C., Photoluminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system (2013) Chem. Mater., 25 (17), pp. 3488-3498 | ||
504 | |a Lillo, C.R., Romero, J.J., Portolés, M.L., Diez, R.P., Caregnato, P., Gonzalez, M.C., Organic coating of 1-2-nm size silicon nanoparticles: Effect on particle properties (2015) Nano Res., 8 (6), pp. 2047-2062 | ||
504 | |a Lillo, C.R., Natalia Calienni, M., Gorojod, R.M., Toward biomedical application of amino-functionalized silicon nanoparticles (2018) Nanomedicine, 13 (11), pp. 1349-1370 | ||
504 | |a Jokerst, J.V., Lobovkina, T., Zare, R.N., Gambhir, S.S., Nanoparticle PEGylation for imaging and therapy (2011) Nanomedicine, 6 (4), pp. 715-728 | ||
504 | |a Lu, Y., Low, P.S., Folate-mediated delivery of macromolecular anticancer therapeutic agents (2012) Adv. Drug Deliv. Rev., 54 (5), pp. 675-693 | ||
504 | |a Calienni, M.N., Temprana, C.F., Prieto, M.J., Nano-formulation for topical treatment of precancerous lesions: Skin penetration, in vitro, and in vivo toxicological evaluation (2017) Drug Deliv. Transl. Res., 8 (3), pp. 496-514 | ||
504 | |a Calienni, M.N., Cagel, M., Montanari, J., Zebrafish (Danio rerio) model as an early stage screening tool to study the biodistribution and toxicity profile of doxorubicin-loaded mixed micelles (2018) Toxicol. Appl. Pharmacol., 357, pp. 106-114 | ||
504 | |a Calienni, M.N., Feas, D.A., Igartúa, D.E., Chiaramoni, N.S., Del Alonso, S.V., Prieto, M.J., Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages (2017) Toxicol. Appl. Pharmacol., 337, pp. 1-11 | ||
504 | |a Gara, P.M.D., Garabano, N.I., Portoles, M.J.L., ROS enhancement by silicon nanoparticles in x-ray irradiated aqueous suspensions and in glioma C6 cells (2012) J. Nanoparticle Res., 14 (3) | ||
504 | |a Teijeiro-Valiño, C., Yebra-Pimentel, E., Guerra-Varela, J., Csaba, N., Alonso, M.J., Sánchez, L., Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model (2017) Nanomedicine, 12 (17), pp. 2069-2082 | ||
504 | |a De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R., De Groot, D., Zebrafish as potential model for developmental neurotoxicity testing. A mini review (2012) Neurotoxicol. Teratol., 34 (6), pp. 545-553 | ||
504 | |a He, J.H., Guo, S.Y., Zhu, F., A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity (2013) J. Pharmacol. Toxicol. Methods, 67 (1), pp. 25-32 | ||
504 | |a Drapeau, P., Saint-Amant, L., Buss, R.R., Chong, M., McDearmid, J.R., Brustein, E., Development of the locomotor network in zebrafish (2002) Prog. Neurobiol., 68 (2), pp. 85-111 | ||
504 | |a Airhart, M.J., Lee, D.H., Wilson, T.D., Miller, B.E., Miller, M.N., Skalko, R.G., Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC) (2007) Neurotoxicol. Teratol., 29 (6), pp. 652-664 | ||
504 | |a Brustein, E., Saint-Amant, L., Buss, R.R., Chong, M., McDearmid, J.R., Drapeau, P., Steps during the development of the zebrafish locomotor network (2003) J. Physiol. Paris, pp. 77-86 | ||
504 | |a Selderslaghs, I.W.T., Hooyberghs, J., Blust, R., Witters, H.E., Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae (2013) Neurotoxicol. Teratol., 37, pp. 44-56 | ||
504 | |a Bhattacharjee, S., Rietjens, I.M.C.M., Singh, M.P., Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: The dominant role of surface charges (2013) Nanoscale, 5 (11), pp. 4870-4883 | ||
504 | |a Oyewumi, M.O., Yokel, R.A., Jay, M., Coakley, T., Mumper, R.J., Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice (2004) J. Control. Rel., 95 (3), pp. 613-626 | ||
504 | |a Klein, S., Dell'Arciprete, M.L., Wegmann, M., Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells (2013) Biochem. Biophys. Res. Commun., 434 (2), pp. 217-222 | ||
504 | |a Prieto, M.J., Bacigalupe, D., Pardini, O., Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent (2006) Int. J. Pharm., 326 (1-2), pp. 160-168 | ||
504 | |a Lu, F., Wu, S.H., Hung, Y., Mou, C.Y., Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles (2009) Small, 5 (12), pp. 1408-1413 | ||
504 | |a Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J., Forrest, M.L., Effects of nanomaterial physicochemical properties on in vivo toxicity (2009) Adv. Drug Deliv. Rev., 61 (6), pp. 457-466 | ||
520 | 3 | |a Aim: Amino functionalization is a first step modification aiming to achieve biomedical applications of silicon nanoparticles, for example, for photodynamic therapy or radiotherapy. Nevertheless, toxicity and low quantum yields due to the positive charge of amino groups emerge as a problem that could be solved with subsequent derivatizations. Materials & methods: Folic and PEG-conjugated nanoparticles were obtained from amino-functionalized silicon nanoparticle (NH 2 SiNP). Cytotoxicity was determined on a tumor cell line at low and high concentrations. Four end points of in vivo toxicity were evaluated on zebrafish (Danio rerio). Results: Folic acid functionalization reduced the cytotoxicity in comparison to amino and PEG-functionalized nanoparticles. In zebrafish, folic functionalization lowered toxicity in general while PEG increased it. Conclusion: Functionalization of NH 2 SiNP with folic acid reduced the toxic effects in vitro and in vivo. This could be useful for therapeutic applications. PEG functionalization did not lower the toxicity. © 2019 2019 Future Medicine Ltd. |l eng | |
536 | |a Detalles de la financiación: Universidad Nacional de Quilmes | ||
536 | |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas | ||
536 | |a Detalles de la financiación: Universidad Nacional de La Plata | ||
536 | |a Detalles de la financiación: Consejo Interinstitucional de Ciencia y Tecnología | ||
536 | |a Detalles de la financiación: Universidad Nacional de San Juan | ||
536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
536 | |a Detalles de la financiación: 1Laboratorio de Biomembranas - GBEyB (IMBICE, CCT-La Plata, CONICET), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, 1876 Bernal, Argentina 2Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, 1900 La Plata, Argentina 3Instituto de Nanosistemas (INS), Universidad Nacional de San Martin, 1650 San Martín, Argentina 4CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, 1428 Ciudad Autónoma de Buenos Aires, Argentina *Author for correspondence: Tel.: +54 114 365 7100, ext. 5625; jmontanari@unq.edu.ar ‡Authors contributed equally | ||
593 | |a Laboratorio de Biomembranas - GBEyB (IMBICE CCT-La Plata, CONICET), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, 1876, Argentina | ||
593 | |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, 1900, Argentina | ||
593 | |a Instituto de Nanosistemas (INS), Universidad Nacional de San Martin, San-Martín, 1650, Argentina | ||
593 | |a CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Ciudad Autónoma de Buenos Aires, 1428, Argentina | ||
690 | 1 | 0 | |a FOLIC ACID |
690 | 1 | 0 | |a SILICON NANOPARTICLES |
690 | 1 | 0 | |a ZEBRAFISH |
700 | 1 | |a Lillo, C.R. | |
700 | 1 | |a Prieto, M.J. | |
700 | 1 | |a Gorojod, R.M. | |
700 | 1 | |a Alonso, S.D.V. | |
700 | 1 | |a Kotler, M.L. | |
700 | 1 | |a Gonzalez, M.C. | |
700 | 1 | |a Montanari, J. | |
773 | 0 | |d Future Medicine Ltd., 2019 |g v. 14 |h pp. 375-385 |k n. 4 |p Nanomedicine |x 17435889 |t Nanomedicine | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061569450&doi=10.2217%2fnnm-2018-0251&partnerID=40&md5=34ca5fe0fbb43904318a8f95179c25fa |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.2217/nnm-2018-0251 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_17435889_v14_n4_p375_Calienni |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17435889_v14_n4_p375_Calienni |y Registro en la Biblioteca Digital |
961 | |a paper_17435889_v14_n4_p375_Calienni |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 86674 |