Comparative toxicity of PEG and folate-derived blue-emitting silicon nanoparticles: In vitro and in vivo studies

Aim: Amino functionalization is a first step modification aiming to achieve biomedical applications of silicon nanoparticles, for example, for photodynamic therapy or radiotherapy. Nevertheless, toxicity and low quantum yields due to the positive charge of amino groups emerge as a problem that could...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calienni, M.N
Otros Autores: Lillo, C.R, Prieto, M.J, Gorojod, R.M, Alonso, S.D.V, Kotler, M.L, Gonzalez, M.C, Montanari, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Future Medicine Ltd. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10308caa a22008057a 4500
001 PAPER-25721
003 AR-BaUEN
005 20230518205750.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061569450 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Calienni, M.N. 
245 1 0 |a Comparative toxicity of PEG and folate-derived blue-emitting silicon nanoparticles: In vitro and in vivo studies 
260 |b Future Medicine Ltd.  |c 2019 
270 1 0 |m Montanari, J.; Laboratorio de Biomembranas - GBEyB (IMBICE CCT-La Plata, CONICET), Departamento de Ciencia y Tecnología, Universidad Nacional de QuilmesArgentina; email: jmontanari@unq.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Llansola Portolés, M.J., Nieto, F.R., Soria, D.B., Photophysical properties of blue-emitting silicon nanoparticles (2009) J. Phys. Chem. C, 113, pp. 13694-13702 
504 |a Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Silicon nanoparticle photophysics and singlet oxygen generation (2010) Langmuir, 26 (13), pp. 10953-10960 
504 |a Romero, J.J., Llansola-Portolés, M.J., Dell'Arciprete, M.L., Rodríguez, H.B., Moore, A.L., Gonzalez, M.C., Photoluminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system (2013) Chem. Mater., 25 (17), pp. 3488-3498 
504 |a Lillo, C.R., Romero, J.J., Portolés, M.L., Diez, R.P., Caregnato, P., Gonzalez, M.C., Organic coating of 1-2-nm size silicon nanoparticles: Effect on particle properties (2015) Nano Res., 8 (6), pp. 2047-2062 
504 |a Lillo, C.R., Natalia Calienni, M., Gorojod, R.M., Toward biomedical application of amino-functionalized silicon nanoparticles (2018) Nanomedicine, 13 (11), pp. 1349-1370 
504 |a Jokerst, J.V., Lobovkina, T., Zare, R.N., Gambhir, S.S., Nanoparticle PEGylation for imaging and therapy (2011) Nanomedicine, 6 (4), pp. 715-728 
504 |a Lu, Y., Low, P.S., Folate-mediated delivery of macromolecular anticancer therapeutic agents (2012) Adv. Drug Deliv. Rev., 54 (5), pp. 675-693 
504 |a Calienni, M.N., Temprana, C.F., Prieto, M.J., Nano-formulation for topical treatment of precancerous lesions: Skin penetration, in vitro, and in vivo toxicological evaluation (2017) Drug Deliv. Transl. Res., 8 (3), pp. 496-514 
504 |a Calienni, M.N., Cagel, M., Montanari, J., Zebrafish (Danio rerio) model as an early stage screening tool to study the biodistribution and toxicity profile of doxorubicin-loaded mixed micelles (2018) Toxicol. Appl. Pharmacol., 357, pp. 106-114 
504 |a Calienni, M.N., Feas, D.A., Igartúa, D.E., Chiaramoni, N.S., Del Alonso, S.V., Prieto, M.J., Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages (2017) Toxicol. Appl. Pharmacol., 337, pp. 1-11 
504 |a Gara, P.M.D., Garabano, N.I., Portoles, M.J.L., ROS enhancement by silicon nanoparticles in x-ray irradiated aqueous suspensions and in glioma C6 cells (2012) J. Nanoparticle Res., 14 (3) 
504 |a Teijeiro-Valiño, C., Yebra-Pimentel, E., Guerra-Varela, J., Csaba, N., Alonso, M.J., Sánchez, L., Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model (2017) Nanomedicine, 12 (17), pp. 2069-2082 
504 |a De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R., De Groot, D., Zebrafish as potential model for developmental neurotoxicity testing. A mini review (2012) Neurotoxicol. Teratol., 34 (6), pp. 545-553 
504 |a He, J.H., Guo, S.Y., Zhu, F., A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity (2013) J. Pharmacol. Toxicol. Methods, 67 (1), pp. 25-32 
504 |a Drapeau, P., Saint-Amant, L., Buss, R.R., Chong, M., McDearmid, J.R., Brustein, E., Development of the locomotor network in zebrafish (2002) Prog. Neurobiol., 68 (2), pp. 85-111 
504 |a Airhart, M.J., Lee, D.H., Wilson, T.D., Miller, B.E., Miller, M.N., Skalko, R.G., Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC) (2007) Neurotoxicol. Teratol., 29 (6), pp. 652-664 
504 |a Brustein, E., Saint-Amant, L., Buss, R.R., Chong, M., McDearmid, J.R., Drapeau, P., Steps during the development of the zebrafish locomotor network (2003) J. Physiol. Paris, pp. 77-86 
504 |a Selderslaghs, I.W.T., Hooyberghs, J., Blust, R., Witters, H.E., Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae (2013) Neurotoxicol. Teratol., 37, pp. 44-56 
504 |a Bhattacharjee, S., Rietjens, I.M.C.M., Singh, M.P., Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: The dominant role of surface charges (2013) Nanoscale, 5 (11), pp. 4870-4883 
504 |a Oyewumi, M.O., Yokel, R.A., Jay, M., Coakley, T., Mumper, R.J., Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice (2004) J. Control. Rel., 95 (3), pp. 613-626 
504 |a Klein, S., Dell'Arciprete, M.L., Wegmann, M., Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells (2013) Biochem. Biophys. Res. Commun., 434 (2), pp. 217-222 
504 |a Prieto, M.J., Bacigalupe, D., Pardini, O., Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent (2006) Int. J. Pharm., 326 (1-2), pp. 160-168 
504 |a Lu, F., Wu, S.H., Hung, Y., Mou, C.Y., Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles (2009) Small, 5 (12), pp. 1408-1413 
504 |a Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J., Forrest, M.L., Effects of nanomaterial physicochemical properties on in vivo toxicity (2009) Adv. Drug Deliv. Rev., 61 (6), pp. 457-466 
520 3 |a Aim: Amino functionalization is a first step modification aiming to achieve biomedical applications of silicon nanoparticles, for example, for photodynamic therapy or radiotherapy. Nevertheless, toxicity and low quantum yields due to the positive charge of amino groups emerge as a problem that could be solved with subsequent derivatizations. Materials & methods: Folic and PEG-conjugated nanoparticles were obtained from amino-functionalized silicon nanoparticle (NH 2 SiNP). Cytotoxicity was determined on a tumor cell line at low and high concentrations. Four end points of in vivo toxicity were evaluated on zebrafish (Danio rerio). Results: Folic acid functionalization reduced the cytotoxicity in comparison to amino and PEG-functionalized nanoparticles. In zebrafish, folic functionalization lowered toxicity in general while PEG increased it. Conclusion: Functionalization of NH 2 SiNP with folic acid reduced the toxic effects in vitro and in vivo. This could be useful for therapeutic applications. PEG functionalization did not lower the toxicity. © 2019 2019 Future Medicine Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de Quilmes 
536 |a Detalles de la financiación: Facultad de Ciencias Físicas y Matemáticas 
536 |a Detalles de la financiación: Universidad Nacional de La Plata 
536 |a Detalles de la financiación: Consejo Interinstitucional de Ciencia y Tecnología 
536 |a Detalles de la financiación: Universidad Nacional de San Juan 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: 1Laboratorio de Biomembranas - GBEyB (IMBICE, CCT-La Plata, CONICET), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, 1876 Bernal, Argentina 2Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, 1900 La Plata, Argentina 3Instituto de Nanosistemas (INS), Universidad Nacional de San Martin, 1650 San Martín, Argentina 4CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, 1428 Ciudad Autónoma de Buenos Aires, Argentina *Author for correspondence: Tel.: +54 114 365 7100, ext. 5625; jmontanari@unq.edu.ar ‡Authors contributed equally 
593 |a Laboratorio de Biomembranas - GBEyB (IMBICE CCT-La Plata, CONICET), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, 1876, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, 1900, Argentina 
593 |a Instituto de Nanosistemas (INS), Universidad Nacional de San Martin, San-Martín, 1650, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Ciudad Autónoma de Buenos Aires, 1428, Argentina 
690 1 0 |a FOLIC ACID 
690 1 0 |a SILICON NANOPARTICLES 
690 1 0 |a ZEBRAFISH 
700 1 |a Lillo, C.R. 
700 1 |a Prieto, M.J. 
700 1 |a Gorojod, R.M. 
700 1 |a Alonso, S.D.V. 
700 1 |a Kotler, M.L. 
700 1 |a Gonzalez, M.C. 
700 1 |a Montanari, J. 
773 0 |d Future Medicine Ltd., 2019  |g v. 14  |h pp. 375-385  |k n. 4  |p Nanomedicine  |x 17435889  |t Nanomedicine 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061569450&doi=10.2217%2fnnm-2018-0251&partnerID=40&md5=34ca5fe0fbb43904318a8f95179c25fa  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.2217/nnm-2018-0251  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17435889_v14_n4_p375_Calienni  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17435889_v14_n4_p375_Calienni  |y Registro en la Biblioteca Digital 
961 |a paper_17435889_v14_n4_p375_Calienni  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86674