Influence of system composition on ascorbic acid destruction at processing temperatures

The anaerobic L-ascorbic acid (AAs) destruction in glucose aqueous model systems (water activity, a(w), 0.94) of pH 3.5, 4.1 and 5.0 was studied. The AAs degraded as a function of time and temperature (70, 80 and 90°C) with a behaviour that, in general, could be described by first order kinetics exc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rojas, A.M
Otros Autores: Gerschenson, L.N
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1997
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09045caa a22007697a 4500
001 PAPER-3230
003 AR-BaUEN
005 20230518203242.0
008 190411s1997 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0030858303 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JSFAA 
100 1 |a Rojas, A.M. 
245 1 0 |a Influence of system composition on ascorbic acid destruction at processing temperatures 
260 |c 1997 
270 1 0 |m Gerschenson, L.N.; Departamento de Industrias, FCEN, Universidad de Buenos Aires, Capital Federal, Argentina 
506 |2 openaire  |e Política editorial 
504 |a (1990) Official Methods of Analysis, pp. 1058-1059. , Association of Official Analytical Chemists, Arlington, VA, USA 
504 |a Bissett, O.W., Berry, R.E., Ascorbic acid retention in orange juice as related to container type (1975) J Food Sci, 40, pp. 178-180 
504 |a Blaug, S.M., Hajratwala, B., Kinetics of aerobic oxidation of ascorbic acid (1972) J Pharm Sci, 61 (4), pp. 556-559 
504 |a Bobbio, P.A., Bobbio, F.O., Trevisan, L.M.V., Estudos sobre a reacao da Maillard. 1. Efeitos da temperatura e do pH (1973) An Acad Brasil Cienc, 45, pp. 419-423 
504 |a Burriel Martí, F., Lucena Conde, F., Arribas Jimeno, S., (1985) Quimica Analitica Cualitativa, pp. 1022-1024. , Paraninfo, Madrid Spain 
504 |a Cerrutti, P., Resnik, S.L., Seldes, A., Ferro Fontán, C., Kinetics of deteriorative reactions in model food systems of high water activity: Glucose loss, 5-hydroxy-methylfurfural accumulation and fluorescence development due to non-enzymic browning (1985) J Food Sci, 50, pp. 627-630 
504 |a Davies, C.G.A., Wedzicha, B.L., Ascorbic acid browning: The incorporation of Cl from ascorbic acid into melanoidins (1994) Food Chem, 49, pp. 165-167 
504 |a Finholt, P., Paulssen, R.B., Higuchi, T., Rate studies on the anaerobic degradation of ascorbic acid I (1963) J Pharm Sci, 52 (10), pp. 948-954 
504 |a Fodor, G., Arnold, R., Mohacsi, T., Karle, I., Flippen-Anderson, J., A new role for L-ascorbic acid: Michael donor of α,β-unsaturated carbonyl compounds (1983) Tetrahedron, 39 (13), pp. 2137-2145 
504 |a Furia, T., (1975) Handbook of Food Additives, pp. 431-436. , CRC Press, Boca Raton, FL, USA 
504 |a Garrido, D., Sarchi, M.I., (1990) Bioestadistica, pp. 98-103. , Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires, Buenos Aires, Argentina 
504 |a Hodge, J.E., Dehydrated foods. Chemistry of browning reactions in model systems (1953) Agric Food Chem, 1 (15), pp. 928-943 
504 |a Joslyn, M.A., Miller, J., Effects of sugars on oxidation of ascorbic acid. 1-Kinetics of auto-oxidation of ascorbic acid (1949) Food Res, 14, pp. 325-339 
504 |a Joslyn, M.A., Supplee, H., Solubility of oxygen in solution of various sugars (1949) Food Res, 14, pp. 209-215 
504 |a Kitic, D., Resnik, S.L., Chirife, J., Solutions of lithium chloride as references sources of water activity above 0·6 and between 5 and 45°C (1986) Lebensm Wiss Technol, 19, pp. 272-274 
504 |a Kurata, T., Sakurai, Y., Degradation of L-ascorbic acid and mechanism of nonenzymic browning reaction. Part I (1967) Agric Biol Chem, 31 (1), pp. 101-105 
504 |a Kurata, T., Sakurai, Y., Degradation of L-ascorbic acid and mechanism of nonenzymic browning reaction. Part II (1967) Agric Biol Chem, 31 (2), pp. 170-176 
504 |a Kurata, T., Sakurai, Y., Degradation of L-ascorbic acid and mechanism of nonenzymic browning reaction. Part III (1967) Agric Biol Chem, 31 (2), pp. 177-184 
504 |a Labuza, T., Kamman, J.K., Reaction kinetics and accelerated tests simulation as a function of temperature (1983) Computer Aided Techniques in Food Technology, pp. 87-90. , ed Saguy I. Marcel Dekker Inc, New York, USA 
504 |a Lee, H.S., Nagy, S., Quality changes and nonenzymic browning intermediates in grapefruit juice during storage (1988) J Food Sci, 53 (1), pp. 168-172 
504 |a Lee, Y.C., Kirk, J.R., Bedford, C.L., Heldman, D.R., Kinetics and computer simulation of ascorbic acid stability of tomato juice as functions of temperature, pH and metal catalyst (1977) J Food Sci, 42 (3), pp. 640-644 
504 |a Leistner, L., Use of hurdle technology in food processing: Recent advances (1995) Food Preservation by Moisture Control, pp. 377-396. , ed Barbosa-Canovas G V & Welti-Chanes J. Technomic Publishing Co Inc, Lancaster, USA 
504 |a Levine, M., Morita, K., Ascorbic acid in endocrine systems (1985) Vitamins and Hormones, 42, pp. 1-64. , Academic Press Inc, London 
504 |a Massaioli, D., Haddad, P.R., Stability of the vitamin C content of commercial orange juice (1981) Food Technol Aus, 33 (3), pp. 136-138 
504 |a Miller, J., Joslyn, M.A., Effect of sugars on oxidation of ascorbic acid II. General and specific effects (1949) Food Res, 14, pp. 340-353 
504 |a Mohr Jr., D.H., Oxygen mass transfer effects on the degradation of vitamin C in foods (1980) J Food Sci, 45, pp. 1432-1433 
504 |a Nagy, S., Smooth, J.M., Temperature and storage effects on percent retention and percent US recommended dietary of vitamin C in canned single-strength orange juice (1977) J Agric Food Chem, 25 (1), pp. 135-138 
504 |a Pino, J., Sánchez Penichet, L., Estudio de la destrucción del ácido ascórbico durante el almacenaje del jugo concentrado de naranja (1981) Revista Ciencias Químicas, 12 (2), pp. 135-141 
504 |a Quast, D.G., Karel, M., Computer simulation of storage life of foods undergoing spoilage by two interacting mechanisms (1972) J Food Sci, 37, pp. 679-683 
504 |a Rojas, A.M., Gerschenson, L.N., Determination de vitamina C en productos frutihortícolas (1991) An Asoc Quim Argent, 79 (2), pp. 97-106 
504 |a Sahbaz, F., Somer, G., The effect of citrate anions on the kinetics of cupric ion-catalysed oxidation of ascorbic acid (1993) Food Chem, 47, pp. 345-349 
504 |a Sokal, R.R., Rohlf, F.J., (1969) Biometry. The Principles and Practice of Statistics in Biological Research, pp. 156-189. , W H Freeman, San Francisco, USA 
504 |a Van Dam, H.E., Kieboom, A.P.G., Van Bekkum, H., The convertion of fructose and glucose in acidic media: Formation of hydroxymethylfurfural (1986) Starck/Stärke, 38 (3), pp. 95-101 
504 |a Villota, R., Karel, M., Prediction of ascorbic acid retention during drying. I. Moisture and temperature distribution in a model system (1980) J Food Process Preserv, 4, pp. 111-134 
504 |a Wedzicha, B.L., (1984) Chemistry of Sulphur Dioxide in Foods, pp. 183-229. , Elsevier Applied Science Publishers Ltd, London, UK 
520 3 |a The anaerobic L-ascorbic acid (AAs) destruction in glucose aqueous model systems (water activity, a(w), 0.94) of pH 3.5, 4.1 and 5.0 was studied. The AAs degraded as a function of time and temperature (70, 80 and 90°C) with a behaviour that, in general, could be described by first order kinetics except for AAs in the system containing L-lysine, in which the results adjusted to zero order. The increment of pH from 3.5 to 5.0 accelerated AAs destruction and browning reactions. The addition of tin(II) or lysine to the glucose medium, increased AAs loss and browning. No difference was observed in AAs degradation and colour intensity when sorbic or propionic acid were used as anti-mycotics, at pH 3.5. Packaging the glucose system of acid pH with an air chamber, produced a faster destruction of AAs and browning of the solution than the one observed for the same system in anaerobic condition. In aerobic condition, the presence of glucose produced a lesser degradation of AAs than the one observed in the system without humectants.  |l eng 
593 |a Departamento de Industrias, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428), Capital Federal, Argentina 
593 |a Consejo Nac. de Invest. Cie., Argentina 
690 1 0 |a ASCORBIC ACID DESTRUCTION 
690 1 0 |a PROCESSING 
690 1 0 |a SYSTEM COMPOSITION 
700 1 |a Gerschenson, L.N. 
773 0 |d 1997  |g v. 74  |h pp. 369-378  |k n. 3  |p J. SCI. FOOD AGRIC.  |x 00225142  |w (AR-BaUEN)CENRE-421  |t Journal of the Science of Food and Agriculture 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030858303&doi=10.1002%2f%28SICI%291097-0010%28199707%2974%3a3%3c369%3a%3aAID-JSFA812%3e3.0.CO%3b2-6&partnerID=40&md5=984f83631447146fdc0e72f68586260f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/(SICI)1097-0010(199707)74:3<369::AID-JSFA812>3.0.CO;2-6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00225142_v74_n3_p369_Rojas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00225142_v74_n3_p369_Rojas  |y Registro en la Biblioteca Digital 
961 |a paper_00225142_v74_n3_p369_Rojas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 64183