On intrinsic bounds in the Nullstellensatz

Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstell...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Krick, T.
Otros Autores: Sabia, J., Solernó, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 1997
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06867caa a22007577a 4500
001 PAPER-3323
003 AR-BaUEN
005 20230518203247.0
008 190411s1997 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0030734174 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a AAECE 
100 1 |a Krick, T. 
245 1 3 |a On intrinsic bounds in the Nullstellensatz 
260 |b Springer Verlag  |c 1997 
270 1 0 |m Krick, T.; Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428- Buenos Aires, Argentina; email: krick@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Amoroso, F., On a conjecture of C. Berenstein and A. Yger Proc. MEGA'94, , Birkhäuser Progress in Math (to appear) 
504 |a Alonso, M., Becker, E., Roy, M.-F., Wörmann, T., Zeros, Multiplicities and Idempotents for Zerodimensional Systems Proc. MEGA'94, , Birkhäuser Progress in Math. (to appear) 
504 |a Berenstein, C., Struppa, D., Recent improvements in the Complexity of the Effective Nullstellensatz (1991) Linear Algebra and Its Appl., 157, pp. 203-215 
504 |a Berenstein, C., Yger, A., Bounds for the degrees in the division problem (1990) Mich. Math. J., 37, pp. 25-43 
504 |a Brownawell, D., Bounds for the degrees in the Nullstellensatz (1987) Ann. Math. Second Series, 126 (3), pp. 577-591 
504 |a Caniglia, L., Galligo, A., Heintz, J., Some new effectivity bounds in computational geometry (1989) Lecture Notes Comput. Sci., 357, pp. 131-151. , Proc. 6th Int. Conf. Applied Algebra, Algebraic Algorithms and Error Correcting Codes AAECC-6, Roma 1988. Berlin, Heidelberg, New York: Springer 
504 |a Caniglia, E., Guccione, J.A., Guccione, J.J., Local membership problems for polynomial ideals. Effective Methods in Algebraic Geometry MEGA 90 (1991) Progress in Mathematics, 94, pp. 31-45. , Mora, T., Traverso, C. (eds). Birkhäuser 
504 |a Cardinal, J.-P., (1993) Dualité et Algorithmes Itératifs pour la Résolution de Systèmes Polynomiaux, , Thesis. Université de Rennes 
504 |a Dickenstein, A., Sessa, C., An effective residual criterion for the membership problem in ℂ[z1 , . . . , zn] (1991) J. Pure and Appl. Algebra, 74, pp. 149-158. , Amsterdam: North-Holland 
504 |a Fitchas, N., Galligo, A., Nullstellensatz effectif et conjecture de Serre (théorème de Quillen-Suslin) pour le Calcul Formel (1990) Math. Nachr., 149, pp. 231-253 
504 |a Fitchas, N., Giusti, M., Smietanski, F., Sur la complexité du théorème des zéros (1995) Approximation and Optimization, 8, pp. 274-329. , Verlag Peter Lang 
504 |a Giusti, M., Heintz, J., Sabia, J., On the efficiency of effective Nullstellensätze (1993) Comput. Complexity, 3, pp. 56-95. , Basel: Birkhäuser 
504 |a Giusti, M., Heintz, J., Morais, J., Morgenstern, J., Pardo, L., Straight-line Programs in Geometric Elimination Theory J. Pure and Appl. Algebra, , to appear 
504 |a Heintz, J., Definability and fast quantifier elimination in algebraically closed fields (1983) Theoret. Comput. Sci., 24, pp. 239-277 
504 |a Hermann, G., Die Frage der endlich vielen Schritte in der Theorie der Polynomideale (1926) Math. Ann., 95, pp. 736-788 
504 |a Kollár, J., Sharp effective Nullstellensatz (1988) J. AMS, 1, pp. 963-975 
504 |a Krick, T., Pardo, L., A computational Method for Diophantine Approximation Proc. MEGA '94, , Birkhäuser Progress in Math (to appear) 
504 |a Kunz, E., Kähler Differentials (1986) Adv. Lect. in Math, , Vieweg Verlag 
504 |a Philippon, P., Dénominateurs dans le théorème des zéros de Hilbert (1991) Acta. Arith., 58, pp. 1-25 
504 |a Sabia, J., Solernó, P., Bounds for Traces in Complete Intersections and Degrees in the Nullstellensatz (1995) AAECC, 6 (6), pp. 353-376 
504 |a Shiffman, B., Degree bounds for the division problem in polynomial ideals (1989) Michigan Math. J., 36, pp. 163-171 
504 |a Sombra, M., (1996) Bounds for the Hilbert Function of Polynomial Ideals, , Preprint, Universidad de Buenos Aires 
504 |a Teissier, B., Résultats récents d'algèbre commutative effective. Séminaire Bourbaki 1989-1990 (1991) Astérisque, 189-190, pp. 107-131 
504 |a Vasconcelos, W., Jacobian Matrices and Constructions in Algebra (1992) Lecture Notes Comput. Sci., 539, pp. 48-64. , Proc. 9th Int. Conf. Applied Algebra. Algebraic Algorithms and Error Correcting Codes AAECC-9, New Orleans, 1991, Berlin, Heidelberg, New York: Springer 
520 3 |a Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system f1 , . . .. , fs and d:= maxjdeg(fj), then there exist polynomials p1 , . . . , ps ∈ k[X1 , . . . , Xn] such that 1 = ∑jpjfjand deg pjfj ≦ 3n2δd. Since the number δ is always bounded by (d + 1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones.  |l eng 
593 |a Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428- Buenos Aires, Argentina 
593 |a Depto. de Economía y Matemat., Universidad de San Andrés, Vito Dumas 284, 1644- Victoria, Buenos Aires, Argentina 
690 1 0 |a COMPLETE INTERSECTION POLYNOMIAL IDEALS 
690 1 0 |a EFFECTIVE NULLSTELLENSATZ 
690 1 0 |a GEOMETRIC DEGREE 
690 1 0 |a TRACE THEORY 
690 1 0 |a FUNCTIONS 
690 1 0 |a GEOMETRY 
690 1 0 |a NUMBER THEORY 
690 1 0 |a SET THEORY 
690 1 0 |a GEOMETRIC DEGREE 
690 1 0 |a HILBERT NULLSTELLENSATZ 
690 1 0 |a TRACE THEORY 
690 1 0 |a POLYNOMIALS 
700 1 |a Sabia, J. 
700 1 |a Solernó, P. 
773 0 |d Springer Verlag, 1997  |g v. 8  |h pp. 125-134  |k n. 2  |p Appl Algebra Eng Commun Comput  |x 09381279  |t Applicable Algebra in Engineering, Communications and Computing 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030734174&doi=10.1007%2fs002000050057&partnerID=40&md5=5cfb1cd2b59bf3d5878f3330f6c81b24  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s002000050057  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick  |y Registro en la Biblioteca Digital 
961 |a paper_09381279_v8_n2_p125_Krick  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 64276