Influence of local-field anisotropy in the description of the resonance in dielectrics and their corresponding Argand diagrams
The local field existing in an ellipsoidal cavity within a dielectric is introduced as an improvement to the classical description of resonance in a dielectric under a harmonic electric field. Considering that the ellipsoids representing polarizable molecules may have any orientation with respect to...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
1995
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 04461caa a22003857a 4500 | ||
---|---|---|---|
001 | PAPER-3673 | ||
003 | AR-BaUEN | ||
005 | 20241204091035.0 | ||
008 | 190411s1995 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-35949007157 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Buep, Adrián Hugo | |
245 | 1 | 0 | |a Influence of local-field anisotropy in the description of the resonance in dielectrics and their corresponding Argand diagrams |
260 | |c 1995 | ||
270 | 1 | 0 | |m Buep, A.H.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina |
504 | |a Casaubon, J.I., Naumenko, V., Barón, M., (1993) J. Mol. Liq., 56, p. 77 | ||
504 | |a Rikken, J.A., Kessener, R.R., (1995) Phys. Rev. Lett., 74, p. 880. , G. L., and Y. A | ||
504 | |a Born, M., Wolf, L., (1970) Principles of Optics, , Pergamon, Oxford | ||
504 | |a Tarrio, C., Schnatterly, S.E., LOCAL FIELD EFFECTS (1991) Modern Physics Letters B, 5, p. 1479 | ||
504 | |a Böttcher, C.J.F., (1973) Theory of Electric Polarization, , Elsevier, New York, Vol. I | ||
504 | |a Bloemer, M.J., Buncick, M.C., Warmack, R.J., Ferrell, T.L., Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper (1988) Journal of the Optical Society of America B, 5, p. 2552 | ||
504 | |a Bloemer, M.J., Ferrell, T.L., Buncick, M.C., Warmack, R.J., (1988) Phys. Rev. B, 37, p. 8015 | ||
504 | |a A. von Hippel, Dielectrics and Waves (Wiley, New York, 1954). .IS FIG. 1. The real part of the permittivity vs ln( ω ). (1) Maxwell field; (2) Debye-Mossotti-Clausius local field (with ω0a= ω0b= ω0c= ω0 and Aλ= case 1 over 3); (3) ellipsoidal local field (Aa= case 1 over 4, Ab= Ac= case 3 over 8, and ω0a= 0.8 times 1016 s-1, ω0b= ω0c = 1.2 times 1016 s-1); (4) ellipsoidal local field (Aa= 1/2, Ab= Ac= case 1 over 4, and ω0a= 1.2 times 1016 s-1, ω0b= ω0c = 0.8 times 1016 s-1). .IE .IS FIG. 2. Imaginary part of the permittivity vs ln( ω ). (1), (2), (3), and (4) as in Fig. 1. .IE .IS FIG. 3. Argand diagrams. (1), (2), (3), and (4) as in Fig. 1. .IE .IS FIG. 4. Argand diagrams. Sph: ``spherical'' Debye-Mossotti-Clausius local field ( ω0a= 1.2 times 1016 s-1, ω0b= ω0c = 0.8 times 1016 s-1 and Aλ= case 1 over 3 ), Ell: ``ellipsoidal'' local field (Aa= 1/2, Ab= Ac= case 1 over 4, and ω0a= 1.2 times 1016 s-1, ω0b= ω0c = 0.8 times 1016 s-1). .IE | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a The local field existing in an ellipsoidal cavity within a dielectric is introduced as an improvement to the classical description of resonance in a dielectric under a harmonic electric field. Considering that the ellipsoids representing polarizable molecules may have any orientation with respect to the applied field, we obtained expressions for the real and imaginary parts of the permittivity as a function of the angular frequency and form factors. A shift in frequency is observed for the maximum of the imaginary permittivity with respect to the natural angular frequencies of resonance that depends on the form factors. In the particular case that all the ellipsoids are lined up with the applied field, the shift of the angular frequency of the resonance depends in a simple way on the form factor of the ellipsoid. The Argand diagrams are shown and compared to those corresponding with different approximations of the local field. © 1995 The American Physical Society. |l eng | |
593 | |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina | ||
700 | 1 | |a Casaubon, Juan Ignacio | |
773 | 0 | |d 1995 |g v. 52 |h pp. 10669-10672 |k n. 15 |x 01631829 |w (AR-BaUEN)CENRE-397 |t Physical Review B | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-35949007157&doi=10.1103%2fPhysRevB.52.10669&partnerID=40&md5=924c061740a3cdb53435c102f8540752 |x registro |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevB.52.10669 |x doi |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_01631829_v52_n15_p10669_Buep |x handle |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v52_n15_p10669_Buep |x registro |y Registro en la Biblioteca Digital |
961 | |a paper_01631829_v52_n15_p10669_Buep |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
963 | |a VARI |