Influence of local-field anisotropy in the description of the resonance in dielectrics and their corresponding Argand diagrams

The local field existing in an ellipsoidal cavity within a dielectric is introduced as an improvement to the classical description of resonance in a dielectric under a harmonic electric field. Considering that the ellipsoids representing polarizable molecules may have any orientation with respect to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Buep, Adrián Hugo
Otros Autores: Casaubon, Juan Ignacio
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1995
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04461caa a22003857a 4500
001 PAPER-3673
003 AR-BaUEN
005 20241204091035.0
008 190411s1995 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-35949007157 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Buep, Adrián Hugo 
245 1 0 |a Influence of local-field anisotropy in the description of the resonance in dielectrics and their corresponding Argand diagrams 
260 |c 1995 
270 1 0 |m Buep, A.H.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
504 |a Casaubon, J.I., Naumenko, V., Barón, M., (1993) J. Mol. Liq., 56, p. 77 
504 |a Rikken, J.A., Kessener, R.R., (1995) Phys. Rev. Lett., 74, p. 880. , G. L., and Y. A 
504 |a Born, M., Wolf, L., (1970) Principles of Optics, , Pergamon, Oxford 
504 |a Tarrio, C., Schnatterly, S.E., LOCAL FIELD EFFECTS (1991) Modern Physics Letters B, 5, p. 1479 
504 |a Böttcher, C.J.F., (1973) Theory of Electric Polarization, , Elsevier, New York, Vol. I 
504 |a Bloemer, M.J., Buncick, M.C., Warmack, R.J., Ferrell, T.L., Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper (1988) Journal of the Optical Society of America B, 5, p. 2552 
504 |a Bloemer, M.J., Ferrell, T.L., Buncick, M.C., Warmack, R.J., (1988) Phys. Rev. B, 37, p. 8015 
504 |a A. von Hippel, Dielectrics and Waves (Wiley, New York, 1954). .IS FIG. 1. The real part of the permittivity vs ln( ω ). (1) Maxwell field; (2) Debye-Mossotti-Clausius local field (with ω0a= ω0b= ω0c= ω0 and Aλ= case 1 over 3); (3) ellipsoidal local field (Aa= case 1 over 4, Ab= Ac= case 3 over 8, and ω0a= 0.8 times 1016 s-1, ω0b= ω0c = 1.2 times 1016 s-1); (4) ellipsoidal local field (Aa= 1/2, Ab= Ac= case 1 over 4, and ω0a= 1.2 times 1016 s-1, ω0b= ω0c = 0.8 times 1016 s-1). .IE .IS FIG. 2. Imaginary part of the permittivity vs ln( ω ). (1), (2), (3), and (4) as in Fig. 1. .IE .IS FIG. 3. Argand diagrams. (1), (2), (3), and (4) as in Fig. 1. .IE .IS FIG. 4. Argand diagrams. Sph: ``spherical'' Debye-Mossotti-Clausius local field ( ω0a= 1.2 times 1016 s-1, ω0b= ω0c = 0.8 times 1016 s-1 and Aλ= case 1 over 3 ), Ell: ``ellipsoidal'' local field (Aa= 1/2, Ab= Ac= case 1 over 4, and ω0a= 1.2 times 1016 s-1, ω0b= ω0c = 0.8 times 1016 s-1). .IE 
506 |2 openaire  |e Política editorial 
520 3 |a The local field existing in an ellipsoidal cavity within a dielectric is introduced as an improvement to the classical description of resonance in a dielectric under a harmonic electric field. Considering that the ellipsoids representing polarizable molecules may have any orientation with respect to the applied field, we obtained expressions for the real and imaginary parts of the permittivity as a function of the angular frequency and form factors. A shift in frequency is observed for the maximum of the imaginary permittivity with respect to the natural angular frequencies of resonance that depends on the form factors. In the particular case that all the ellipsoids are lined up with the applied field, the shift of the angular frequency of the resonance depends in a simple way on the form factor of the ellipsoid. The Argand diagrams are shown and compared to those corresponding with different approximations of the local field. © 1995 The American Physical Society.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
700 1 |a Casaubon, Juan Ignacio 
773 0 |d 1995  |g v. 52  |h pp. 10669-10672  |k n. 15  |x 01631829  |w (AR-BaUEN)CENRE-397  |t Physical Review B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-35949007157&doi=10.1103%2fPhysRevB.52.10669&partnerID=40&md5=924c061740a3cdb53435c102f8540752  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevB.52.10669  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01631829_v52_n15_p10669_Buep  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v52_n15_p10669_Buep  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_01631829_v52_n15_p10669_Buep  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI