Numerably contractible categories

We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Minian, Elías Gabriel
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03601caa a22004817a 4500
001 PAPER-3801
003 AR-BaUEN
005 20250725123417.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33745447765 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Minian, Elías Gabriel 
245 1 0 |a Numerably contractible categories 
260 |c 2005 
270 1 0 |m Minian, E.G.; Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina; email: gminian@dm.uba.ar 
504 |a Conduché, F., Au sujet de l'existence d'adjoints á droite aux foncteurs image réciproque dans la catégorie des catégories (1972) C.R. Acad. Sci. Paris, 275, pp. 891-894 
504 |a Tom Dieck, T., Kamps, K.H., Puppe, D., Homotopietheorie (1970) Lecture Notes in Math., 157, pp. vi+265 
504 |a Dold, A., Partitions of unity in the theory of fibrations (1963) Ann. Math., 78, pp. 223-255 
504 |a Fritsch, R., Piccinini, R.A., Cellular structures in topology (1990) Cambridge Studies in Advanced Mathematics, 19, pp. XII+362 
504 |a Hoff, G., Catégories fibrées et homotopie (1974) C.R. Acad. Sci. Paris, 278, pp. 223-225 
504 |a Hoff, G., Introduction à l'homotopie dans Cat (1975) Esquisses Mathématiques, 23, pp. i+33 
504 |a Lee, M.J., Homotopy for functors (1972) Proc. Amer. Math. Soc., 36, pp. 571-577 
504 |a Minian, E.G., Generalized cofibration categories and global actions (2000) K-Theory, 20, pp. 37-95 
504 |a Minian, E.G., Cat as a Lambda-cofibration category (2002) J. Pure Appl. Algebra, 167, pp. 301-314 
504 |a Minian, E.G., Complexes in cat (2002) Topology Appl., 119, pp. 41-51 
504 |a Minian, E.G., Loop and suspension functors for small categories and stable homotopy groups (2003) Appl. Categorical Struct., 11, pp. 207-218 
504 |a Minian, E.G., (2003) Spectra of Small Categories and Infinite Loop Space Machines, , Preprint 
504 |a Segal, G., Categories and cohomology theories (1974) Topology, 13, pp. 293-312 
504 |a Thomason, R.W., Cat as a closed model category (1980) Cahiers Topo. et Géom. Diff., 21 (3), pp. 305-324 
506 |2 openaire  |e Política editorial 
520 3 |a We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines for global actions, small categories and related objects. © Springer 2006.  |l eng 
593 |a Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a CW-COMPLEXES 
690 1 0 |a H-SPACES 
690 1 0 |a SMALL CATEGORIES 
773 0 |d 2005  |g v. 36  |h pp. 209-222  |k n. 3-4  |p K-Theory  |x 09203036  |w (AR-BaUEN)CENRE-363  |t K-Theory 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745447765&doi=10.1007%2fs10977-006-7103-1&partnerID=40&md5=3ad69b25c21737c48856ed1d9f5e19a4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10977-006-7103-1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09203036_v36_n3-4_p209_Minian  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09203036_v36_n3-4_p209_Minian  |y Registro en la Biblioteca Digital 
961 |a paper_09203036_v36_n3-4_p209_Minian  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 64754