Analytical description of the dynamical moduli for a lognormal distribution of relaxation or retardation times

Some mathematical properties of the normalized dimensionless functions, involved in the expressions for the components of the dynamic moduli, for a lognormal distribution of retardation or relaxation times, are presented. Finally, it is shown how the mathematical properties can be used to obtain the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Povolo, Francisco
Otros Autores: Matteo, Claudia Leda
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers 1991
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03110caa a22003857a 4500
001 PAPER-385
003 AR-BaUEN
005 20250825101509.0
008 190411s1991 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-51649147083 
030 |a HGHPF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Povolo, Francisco 
245 1 0 |a Analytical description of the dynamical moduli for a lognormal distribution of relaxation or retardation times 
260 |b Kluwer Academic Publishers  |c 1991 
270 1 0 |m Povolo, F.; Facultad de Ciencias Exáctas y Naturales, Dto. de Física, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
504 |a Nowick, A.S., Berry, B.S., (1972) Anelastic Relaxation in Crystalline Solids, , Academic Press, New York, N.Y 
504 |a Nowick, A.S., Berry, B.S., Lognormal Distribution Function for Describing Anelastic and Other Relaxation Processes I. Theory and Numerical Computations (1961) IBM Journal of Research and Development, 5, p. 297 
504 |a Gautschi, W., (1965) Handbook of Mathematical Functions, , M., Abramowitz, I. A., Stegun, Dover, New York, N.Y 
504 |a F. Povolo and C. L. Matteo: to be published 
506 |2 openaire  |e Política editorial 
520 3 |a Some mathematical properties of the normalized dimensionless functions, involved in the expressions for the components of the dynamic moduli, for a lognormal distribution of retardation or relaxation times, are presented. Finally, it is shown how the mathematical properties can be used to obtain the parameters, characteristic of the distribution, directly from the experimental dynamic moduliagainst frequency curves, without any numerical evaluation of the normalized dimensionless functions. © 1991 Società Italiana di Fisica.  |l eng 
593 |a Facultad de Ciencias Exáctas y Naturales, Dto. de Física, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Dto. de Materiales, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, Buenos Aires, 1429, Argentina 
690 1 0 |a CONTINUUM MECHANICS 
700 1 |a Matteo, Claudia Leda 
773 0 |d Kluwer Academic Publishers, 1991  |g v. 13  |h pp. 1491-1500  |k n. 12  |p Il Nuovo Cimento D  |x 03926737  |w (AR-BaUEN)CENRE-2206  |t Il Nuovo Cimento D 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649147083&doi=10.1007%2fBF02457186&partnerID=40&md5=689002a34b02d6e545def66a940defeb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/BF02457186  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03926737_v13_n12_p1491_Povolo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03926737_v13_n12_p1491_Povolo  |y Registro en la Biblioteca Digital 
961 |a paper_03926737_v13_n12_p1491_Povolo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 61338